Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
Technical Paper

Sensitivity Analysis and Experimental Verification of Automotive Transmission Gearbox Synchronizer Gear Shift Quality

2020-09-25
2020-28-0386
Synchronizer is the key element for the smoother gear shift operation in the constant mesh transmission. In the gear shift operation, the double bump occurs at the contact between the sleeve teeth and the clutch body ring teeth after the full synchronization. The double bump is random in nature and the dynamics is difficult to predict. The double bump gives a reaction force to the driver and affects the gear shift quality. This paper focus on the sensitivity analysis of the synchronizer ring index percentage and the clutch body ring asymmetric chamfer angle to reduce the occurrence and magnitude of the double bump. The system level simulation model is developed using 1D simulation tool. The modeling is done after complete declutching event so that there is no power supply to the transmission. The model can handle both upstream and downstream reflected inertia depending upon the gear shift event.
Journal Article

Front-Loading of Occupant Ingress-Egress Targets in Vehicle Architecture

2016-04-05
2016-01-0004
Achieving comfortable Ingress-Egress (I/E) is a major ergonomic challenge for Occupant packaging engineers during vehicle design. Vehicles should be designed so that the targeted drivers are able to comfortably get in and out of it. Simulating occupant ingress/egress motion for vehicle involves many constraints and capturing actual behavior of human motion is cumbersome. In recent years, there are number of studies to investigate occupant ingress/egress motion and to understand perceived discomfort, influence of specific design parameters, age impact etc. These studies majorly used techniques like real time motion capturing in a vehicle mockup, comparison of joint torques developed during the ingress/egress motions etc., to identify the occupants discomfort aspects. This paper aims to capture the ingress/egress influencing parameters and incorporating the parameters in vehicle architecture layout during concept phase itself considering various anthropometric measurements.
Journal Article

Lithium Ion Battery for Hybrid and Electric Mobility under Indian Ambient Conditions - A Perspective

2012-09-10
2012-01-1611
Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), Extended Range Electric Vehicles (EREVs), Battery Electric Vehicles' (BEVs) development is gaining traction across all geographies to help meet ever increasing fuel economy regulations and as a pathway to offset concerns due to climate change and improve the overall green quotient of automobiles. These technologies have primarily shifted towards Li-ion batteries for Energy Storage (due to energy density and mass). In order to make actual business sense of these technologies, of which, battery is a major cost driver, it is necessary for these batteries to provide similar performance and life expectancy across the operating and soak (storage) range of the vehicles, as well as provide the requirements at a competitive cost.
Technical Paper

Strategy for EOBD Compliant Plausibility Check of Air Mass Flow Sensor in Absence of Boost Pressure Sensor

2008-04-14
2008-01-1296
In the move towards cleaner diesel emissions, the European On Board Diagnostics (EOBD) legislation mandates monitoring of drift of air mass flow sensor. Drift of a sensor is defined as the phenomenon in which output signal slowly deviates independent of the measured property. Long term drift usually indicates a slow degradation of sensor properties over a long period of time. Drift monitoring of the air mass flow sensor involves comparing the signal from the sensor with a reference signal under special operating conditions. Boost pressure sensor, which measures absolute intake manifold pressure and intake air temperature, is used to calculate the reference signal. For engines with constant geometry turbo charger, boost pressure sensor is solely used for drift monitoring. Therefore, it was a challenge to come up with a means of finding the drift in air flow mass sensor without boost pressure sensor.
Technical Paper

Design Improvement Driven by CAE for SUV Structural Crashworthiness in Offset Frontal Crash as per ECE R 94

2008-04-14
2008-01-0505
The scope of the project is to achieve SUV structural performance improvement to meet the offset frontal crash safety requirements as per ECE R 94 Regulation by design modifications in different Sub-systems of the vehicle structure suggested with the help of CAE crash simulations. The study can be classified in four main phases mentioned below. The first phase of the development is to conduct a crash test and CAE simulation for the baseline design. The second phase includes correlation activity among baseline test and CAE. The third phase is to achieve improvement by vehicle structure design modifications and new parts in chassis and BIW guided with CAE simulations and design iterations. Finally the forth phase deals with validation of new crashworthy vehicle design by last crash test.
Technical Paper

Aerodynamic Drag Simulation and Validation of a Crossover

2010-04-12
2010-01-0757
Aerodynamic simulation using commercial CFD (Computational Fluid Dynamics) codes is now an integral part of the vehicle design process. Aerodynamic prediction and vehicle development program runs in parallel. This requires a good agreement between experimental measurements and CFD prediction of aerodynamic behavior of a vehicle. The comparison between experimental and simulation results show differences, as it may not be possible to replicate effect of all the wind tunnel parameters in the simulation. This paper presents the details of aerodynamic simulation process of a Crossover and its validation with the experimental results available from the wind tunnel tests. The results are compared for different configurations such as- closing the grille openings, removing the rearview mirror, adding ski-rack and using different tyres. This study also includes the effect of different wind speeds and yaw angles on the coefficient of drag.
Technical Paper

Simulation of Gear Shift Force Curve and Shift Rail Ramp Profile

2010-04-12
2010-01-0896
This paper presents a simulation for the gear shift process of a manual transmission, implemented using a library function. All the subsystem (i.e. synchronizer and the shift system) are correlated to generate a gear shift curve for optimum shift ability prediction of a manual transmission. A 5-speed manual transmission is used as an example in the paper to illustrate the simulation, co-relation and the validation of the gear shift performance curve on the vehicle. The dynamic behavior of the shift system and synchronizer in engaging and disengaging the gear is simulated through the gear shift characteristics to generate the shift rail's ramp profile. The synchronizer travel is co-related with the shift rail ramp profile to get a negative force after synchronization is over. The profile indicates the role of the detent ball diameter, radius on the shift rail ramp's profile etc and how it affects synchronizer force over the shift rail travel.
Technical Paper

A Systematic Approach for Weight Reduction of BIW Panels through Optimization

2010-04-12
2010-01-0389
This paper describes application of Design of Experiments (DOE) technique and optimization for mass reduction of a Sports utility vehicle (SUV) body in white (BIW). Thickness of the body panels is taken as design variable for the study. The BIW global torsion, bending and front end modes are key indicators of the stiffness and mass of the structure. By considering the global modes the structural strength of the vehicle also gets accounted, since the vehicle is subjected to bending and twisting moments during proving ground test. The DOE is setup in a virtual environment and the results for different configurations are obtained through simulations. The results obtained from the DOE exercise are used to check the sensitivity of the panels. The panels are selected for mass reduction based on the analysis of the results. This final configuration is further evaluated for determining the stiffness and strength of the BIW.
Technical Paper

Multidisciplinary Design Optimization of Automobile Tail Door

2017-03-28
2017-01-0251
Stringent emission norms by government and higher fuel economy targets have urged automotive companies to look beyond conventional methods of optimization to achieve an optimal design with minimum mass, which also meets the desired level of performance targets at the system as well as at vehicle level. In conventional optimization method, experts from each domain work independently to improve the performance based on their domain knowledge which may not lead to optimum design considering the performance parameters of all domain. It is time consuming and tedious process as it is an iterative method. Also, it fails to highlight the conflicting design solutions. With an increase in computational power, automotive companies are now adopting Multi-Disciplinary Optimization (MDO) approach which is capable of handling heterogeneous domains in parallel. It facilitates to understand the limitations of performances of all domains to achieve good balance between them.
Technical Paper

Front Loading of Foot Swing Envelop during Egress to Vehicle Architecture

2017-07-10
2017-28-1960
In automotive industry, design of vehicle to end customer with proper ergonomics and balancing the design is always a challenge, for which an accurate prediction of postures are needed. Several studies have used Digital Human Models (DHM) to examine specific movements related to ingress and egress by translating complex tasks, like vehicle egress through DHMs. This requires an in-depth analysis of users to ensure such models reflect the range of abilities inherent to the population. Designers are increasingly using digital mock-ups of the built environment using DHMs as a means to reduce costs and speed-up the “time-to-market” of products. DHMs can help to improve the ergonomics of a product but must be representative of actual users.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Development of a Free Motion Headform Impactor

2011-01-19
2011-26-0105
The development of interior fittings of passenger car to minimize the injuries to the head of the occupants requires mandatory compliance to the regulations in Europe and USA. In European regulation ECE R21 and similarly in FMVSS 201 the test on the instrument panel area suffices. The FMVSS 201u requirements in USA require also a free motion headform to be impacted on additional areas of the A-Pillar trim, sun visors, grab handles, and seat belt upper anchorage points of the B-Pillar too. Free Motion Headform Impactors (FMHI) are costly equipment. The FMVSS 201u [1] test is not conducted by any test agency in India as yet. Paper deals with the development of the head form impactor to fire the headform at angular positions in the vehicle and the test results have enabled the development of the vehicle interiors to enhance the safety of vehicles in crash situations.
Technical Paper

Design for Six Sigma (DFSS) of Hydroformed Engine Cradle Design for SUV Application

2011-01-19
2011-26-0109
In the new product design, meeting customer requirements, process alignment, timely execution and successful implementation plays a critical role. Six sigma methodology is a disciplined, standardized methodology supported by analytical tools to meet the quality and functional targets. An engine cradle or sub-frame is the principal load carrying member in a monocoque vehicle construction. It is extensively used to (i) provide structural support and retention of power train, suspension control arms, stabilizer bar, and steering rack mounting features (ii) to isolate the high frequency vibrations of engine and suspension from the remaining structures (iii) to absorb and transmit the impact forces during frontal crash. This paper attempts to explain (i) the various DFSS-DMADV techniques used during the engine cradle design and development (ii) correlation between the cradle stiffness simulation and test measurement values (iii) cradle NVH test results.
Technical Paper

Correlation between Virtual and Physical Test for Offset Deformable Barrier Crash for SUV

2011-01-19
2011-26-0091
In the present age automotive manufacturers are putting their effort to reduce product cycle time and product cost. This has been possible with the help of Computer Aided Engineering (CAE). CAE is playing vital role in design and develop of new products as well as up gradation of existing one to meet new safety regulations and customer requirements. It has become increasingly accepted that use of well-developed, CAE models present the best approach for upfront prediction of vehicle behaviour. The ability to simply predict trends is no longer acceptable. Meaningful results can be derived, and projections made, from the CAE model, only if the CAE results are correlated against physical tests. Correlation between Simulation and Physical test is key, to build confidence on product development with virtual validation. This paper discusses the correlation between the CAE and Physical Test for offset deformable barrier crash for 4 Wheel Drive (4WD) Sports Utility Vehicle (SUV) vehicle.
Technical Paper

Intake System Design Approach for Turbocharged MPFI SI Engine

2011-01-19
2011-26-0088
The automotive industry is currently facing the challenge of significantly stringent requirements regarding CO₂ emission and fuel economy coming from both legislations and customer demand. Advanced engine technologies play a vital role for downsizing of gasoline engine. The development of key design technologies for high efficiency gasoline engines is required for the improvement of competitive power in the global automobile industry. This paper focused on effect of geometry of intake manifold of gas exchange process and consequently the performance of the engine. Specially, the optimal design technologies for the intake manifold and intake port shape must be established for high performance, increasingly stringent fuel economy and emission regulations. Space in vehicle or packaging constraints and cost are also important factors while consideration of the design.
Technical Paper

Integration of 1D and 3D CFD Software for Cabin Cool Down Simulation

2018-04-03
2018-01-0773
This study presents a method for a cool down simulation of passenger compartments. The purpose was to integrate the 3D Computational Fluid Dynamics (CFD) software StarCCM+ with the 1D thermal management software KULI. The targets were to achieve accurate prediction of temperature diffusion inside the cabin for a transient cycle simultaneously reducing the modelling effort and CPU-time consumption. The 1D simulation model was developed in KULI and the flow field data required to simulate mass flow and diffusion inside the cabin was implemented from Star CCM+. The simulation model consists of a multi-zone cabin and models the complete refrigerant circuit consisting of evaporator, condenser, Thermal Expansion Valve (TXV) and compressor. This paper describes the process flow, definition of the inputs required and finally the validation of the simulation data with experiments.
Technical Paper

Deriving the Compressed Accelerated Test Cycle from Measured Road Load Data

2012-04-16
2012-01-0063
Validation of vehicle structure is at the core of reduction of product development time. Robust and accelerated validation becomes an important task. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, manoeuvres and powertrain loads. Majority of the body in white and chassis structural failures are caused due to vertical loading. Measured road load data in test track have variable amplitude histories. These histories often contain a large percentage of small amplitude cycles which are non damaging. This paper describes a systematic approach to derive the compressed load cycle from the measured road load data in order to produce representative and meaningful yet economical load cycle for fatigue simulation. In-house flow was developed to derive the compressed load time history.
Technical Paper

Evaluation of Vehicle Systems Structural Durability Using PSD Based Fatigue Life Approach

2012-04-16
2012-01-0953
In current competitive environment automobile industry is under heavy pressure to reduce time to market. First time right design is an important aspect to achieve the time and cost targets. CAE is a tool which helps designer to come up with first time right design. This also calls for high degree of confidence in CAE simulation results which can only be achieved by undertaking correlation exercises. In automobiles most of the structures are subjected to vibration from dynamic loads. All the dynamic road loads are random in nature and can be very easily expressed in terms of power spectral density functions. In the current scenario structural durability of the parts subjected to vibration is done partially through modal performance and partially though frequency response analysis. The only question that arises is what amplitude to use at what frequency and how to map all the accelerated tests dynamic load frequency spectrum to simulation domain.
X