Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Virtual Validation of BHL Dipper Using CAE and Correlation with Test Data

2020-04-14
2020-01-0515
Use of Computer Aided Engineering (CAE) tools for virtual validation has become an essential part of every product development process. Using CAE tools, accurate prediction of potential failure locations is possible even before building the proto. This paper presents a detailed case study of virtual validation of Backhoe Loader (BHL) dipper arm using CAE tools (MBD: Multi Body Dynamics and FEA: Finite Element Analysis) and comparison of simulation results with test data. In this paper, we have illustrated the modelling of Backhoe Loader in MSc ADAMS software. The detail ADAMS model was created and validated. The component mass, Center of Gravity (C.G) and Mass Moment of Inertia (MOI) was taken from CAD data. Trenching is simulated by operating the different hydraulic cylinders of the BHL. Loader arm cylinders and stabilizer cylinders are operated to lift the machine tires above the ground level.
Technical Paper

Unloaded Synchronizer Wear in Manual Transmission Gearbox

2020-09-25
2020-28-0334
Synchronizers are the most critical parts of a manual transmission. There are classical calculations available for the synchronizer design and studies are available for the normal functioning of synchronizer rings which describes how the synchronizer behaves in the event of gear shifting. The objective of this study is to describe the synchronizer behavior when synchronizers are not functional, i.e., in other gear engaged condition and the rings are free. This study describes the failure mechanism of the unused synchronizer rings which are moving freely in the packaging space. The findings of this synchronizer design cannot be limited only for synchronizer performance and standard durability calculations. To ensure proper function of synchronizer rings and to achieve the required life the external parameters like clearances, lubrication, clutch design for dampening torsional vibration from the engine are to be considered.
Technical Paper

A Systematic Approach for Weight Reduction of BIW Panels through Optimization

2010-04-12
2010-01-0389
This paper describes application of Design of Experiments (DOE) technique and optimization for mass reduction of a Sports utility vehicle (SUV) body in white (BIW). Thickness of the body panels is taken as design variable for the study. The BIW global torsion, bending and front end modes are key indicators of the stiffness and mass of the structure. By considering the global modes the structural strength of the vehicle also gets accounted, since the vehicle is subjected to bending and twisting moments during proving ground test. The DOE is setup in a virtual environment and the results for different configurations are obtained through simulations. The results obtained from the DOE exercise are used to check the sensitivity of the panels. The panels are selected for mass reduction based on the analysis of the results. This final configuration is further evaluated for determining the stiffness and strength of the BIW.
Technical Paper

Multidisciplinary Design Optimization of Automobile Tail Door

2017-03-28
2017-01-0251
Stringent emission norms by government and higher fuel economy targets have urged automotive companies to look beyond conventional methods of optimization to achieve an optimal design with minimum mass, which also meets the desired level of performance targets at the system as well as at vehicle level. In conventional optimization method, experts from each domain work independently to improve the performance based on their domain knowledge which may not lead to optimum design considering the performance parameters of all domain. It is time consuming and tedious process as it is an iterative method. Also, it fails to highlight the conflicting design solutions. With an increase in computational power, automotive companies are now adopting Multi-Disciplinary Optimization (MDO) approach which is capable of handling heterogeneous domains in parallel. It facilitates to understand the limitations of performances of all domains to achieve good balance between them.
Technical Paper

Front Loading In-Vehicle Traffic Light Visibility Requirements for Driver as per Indian Road Standards

2017-07-10
2017-28-1932
Traffic awareness of the driver is one of the prime focus in terms of pedestrian and road safety. Driver experience plays a significant role and driving requires careful attention to changing environments both within and outside the vehicle. Any lapse in driver attention from the primary task of driving could potentially lead to an accident. It is observed that, lack of attention on the ongoing traffic and ignorant about the traffic information such as traffic lights, road signs, traffic rules and regulations are major cause for the vehicle crash. Traffic signals & signage are the most appropriate choice of traffic control for the intersection, it is important to ensure that driver can see the information far away from the intersection so that he/she can stop safely upon viewing the yellow and red display. Then, upon viewing the signal operations and conditions the motorist can stop his/her vehicle successfully before entering the intersection.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

In-house Design and Development of Pedestrian Protection Test Rig

2013-01-09
2013-26-0021
Regulations on pedestrian safety have been introduced globally since the year 1990 and in India it will have to be met around the year 2016. Process of making vehicle compliant to this regulation requires rigorous design development and testing. Testing involves propelling head-forms (Child and Adult) on bonnet at 35 km/h and 40 km/h and leg-forms (Upper and Lower) on bumper at 40 km/h according to the different National / International / NCAP regulatory requirements A pedestrian protection test rig has been indigenously designed and developed in-house to perform pedestrian protection impact testing in-house. The paper describes the salient features of the pedestrian protection test rig, its functioning, operation and process of acquiring the data for determination of the values required by crash safety regulations.
Technical Paper

Experimental Approach to Improve the Door Slam Noise Quality in Utility Vehicles

2013-01-09
2013-26-0095
The customer perception about the door slam noise and its feel would indicate the brand image of the car. In this paper the authors have made an effort to improve the door slam noise quality of the vehicle, which is currently in production. This paper describes the probable areas in the door to improve the slam noise quality by attempting modifications in the door design factors, such as door alignments, door panel stiffness, door trims, window glass rattle, latch striker alignment, door seals, air extractor. Since the door closing event is a transient phenomenon, it requires special tools such as wavelet transforms, Zwicker loudness to understand the slam events precisely. Subjective jury evaluations have been conducted to understand the effect of these modifications and rank the modifications based on their contributions to the door slam quality.
Technical Paper

Generating a Real World Drive Cycle–A Statistical Approach

2018-04-03
2018-01-0325
Drive cycles have been an integral part of emission tests and virtual simulations for decades. A drive cycle is a representation of running behavior of a typical vehicle, involving the drive pattern, road characteristics and traffic characteristics. Drive cycles are typically used to assess vehicle performance parameters, perform system sizing and perform accelerated testing on a test bed or a virtual test environment, hence reducing the expenses on road tests. This study is an attempt to design a relatively robust process to generate a real world drive cycle. It is based on a Six Sigma design approach which utilizes data acquired from real world road trials. It explicitly describes the process of generating a drive cycle which closely represents the real world road drive scenario. The study also focuses on validation of the process by simulation and statistical analysis.
Technical Paper

Low Cost Standalone Unit for Static Bending Lamp Operation

2013-09-24
2013-01-2390
The present invention relates to automobile headlamps, to be more precise static bending lamps. It is well experienced that driving at night times can be quite hectic as the ordinary headlamps do not trace the trajectory of the vehicle. This brought the idea of bending lamps; two different approaches have evolved for the same functionality, either to turn the light source or a projector, called dynamic bending and the second approach is to provide a secondary lamp at the corner focusing location for fulfilling the purpose. The present systems rely on the steering wheel sensor and the vehicle speed data for control. This requires the system to have a CAN transceiver module adding to the cost. In this paper, we will be focusing on static bending lamp in which the fixed-focus positioned lamp will be used for lighting the required area, moreover this gives design a more robustness and cost beneficial control system for the static bending lamp.
Technical Paper

Evaluation of Hardtop Roof Mounting Schemes for High Speed Performance and Noise

2021-04-06
2021-01-0292
Customer comfort has been at the core of any vehicle design. A segment of vehicle wherein the provision given for roof to be removed to enhance the customer experience. A similar vehicle is the subject matter for the evaluation here. The vehicle being off-roader, customer buying such vehicles are passionate about these lifestyle vehicle’s performance aspects. The roof components are plastic and are bolted with the BIW structure with sealing in place at the interface. The windshield angle being close to vertical, there is a tendency for flow separation at the front tip of roof, while vehicle driven at speed. This creates significant pressure difference across the roof surface, leading to vertical deformation of roof between the bolted mounts. In case the magnitude of deformations not controlled, the reduced sealing effectiveness lets air gushing in the cabin and make noise which can be audible to customer.
Technical Paper

An Alternative Method to Improve the CFD Predictions for Vehicle Front End Flow

2015-01-14
2015-26-0199
In vehicle Front End Flow (FEF) analysis, the basic objective is to predict the mass flow/velocity of air at radiator inlet with constant fan rotation. In general, the Multiple Reference Frame (MRF) model is used to model the fan. The flow velocity distribution at radiator inlet due to fan rotation should be uniform in circumferential direction whereas, it should vary in radial direction depending upon the blade geometry. However, the drawback with MRF model is that, it gives higher velocities near radiator inlet at regions corresponding to the fan blades and lower velocities at other regions, which is not realistic. This issue is more predominant when the vehicle is at low speeds or when radiator is placed at mid or back of the vehicle or the fan is having less number of blades. In order to nullify this uneven velocity distribution at radiator inlet, Mixing Plane (MP) approach was used in addition to the MRF model.
Technical Paper

Underbody Drag Reduction Study for Electric Car Using CFD Simulations

2015-01-14
2015-26-0211
Electric cars are the future of urban mobility which have very less carbon foot print. Unlike the conventional cars which uses BIW (Body in White), some of the electric cars are made with a space frame architecture, which is light weight and suitable for low volume production. In this architecture, underbody consists of frames, battery pack, electronics housing and electric motor. Underbody drag increases due to air entrapment around these components. Aerodynamic study for baseline model using CFD simulations showed that there was a considerable air resistance due to underbody components. To reduce the underbody drag, different add-ons are used and their effect on drag is studied. A front spoiler (air dam) is used to deflect the incoming air towards sides of the car. A under hood cover for front components, trailing arm cover for trailing arm and rear bumper cover for rear components were used to reduce underbody drag.
Technical Paper

A Component Level Test Methodology to Validate Hydraulic Clutch Slave Cylinder

2021-04-06
2021-01-0709
In this current fast-paced world, releasing a defect free product on time is of utmost importance in the automotive domain. The automobile powertrain is designed with a fine balance of weight and power. Clutch, an intermediate part between engine & transmission in manual transmission vehicle plays crucial role for vehicle smooth drive & functionality. Hydraulic clutch slave cylinder (CSC) which is a part of clutch release system was observed with one failure mode in one of the vehicles during internal road validation. It facilitates to actuate the clutch diaphragm in order to disengage the clutch when clutch pedal is pressed and to re-engage the clutch back when the clutch pedal is released. CSC failure directly disconnects the response of leg to clutch and thus driver may lose vehicle control and can possibly cause a severe vehicle crash.
Technical Paper

A Comprehensive Study on the Design and Development Methodology of Automotive Steel Wheel Rims Undergoing Highly Transient Cornering Events

2021-04-06
2021-01-0827
Wheel rim is one of the most critical safety parts in a vehicle. Strength in cornering loading is one of the most important durability test requirements for automotive steel wheel rim apart from other loading conditions like vertical and impact loads. Based on the category of vehicle and customer usage pattern, the accelerated cornering test is derived for testing steel wheel rims. The simulation and certification of steel wheel rim for the required dynamic durability testing requirement involves many steps ranging from acceptance criteria derivation to reliably addressing known potential failure zones in steel wheel rims. Nave radius and crown are sensitive to cornering loads, given the pitch circle diameter at the concept stage, the known effects of these key parameters are determined from DOE and used as reliable indicators to arrive at the shape and section of the steel wheel rim.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Finite Element Analysis and Correlation with Physical Test of Tractor Hood Bang Endurance Test

2024-01-16
2024-26-0071
Tractors primarily serve agricultural functions but are also employed in various other applications such as loading, construction, and hauling. Tractors comprise several key assembly, including the engine, transmission, front hood assembly, and skid, among others. The hood is a critical assembly of the tractor, enclosing the engine and its associated parts. It is constructed from sheet metal with a 'Class A' surface finish for aesthetic purposes. The Hood is locked using latch mechanism mounted on the tractor chassis. The primary function of the hood is to facilitate the opening and closing of the hood assembly during servicing, and it often undergoes rough handling. Therefore, it becomes imperative to validate the durability of the hood assembly to ensure it can withstand the real-world conditions it encounters during these operations.
Technical Paper

Weight and Drivetrain Optimization via Fuel Pump & Vacuum Pump Drive Integration on Engine Camshaft in a Pushrod Type Valve Actuated Engine

2024-01-16
2024-26-0046
In the realm of modern powertrains, the paramount objectives of weight reduction, cost efficiency, and friction optimization drive innovation. By streamlining drive trains through component minimization, the paper introduces a groundbreaking approach: the integration of fuel pump and vacuum pump drive systems into the main camshaft of a two-valve-per-cylinder push-rod actuated 4-cylinder diesel engine. This innovation is poised to concurrently reduce overall weight, lower costs, and minimize drive losses. The proposed integration entails the extension of the camshaft with a tailored slot, accommodating a three-lobed cam composed of advanced materials. This novel camshaft configuration enables the unified propulsion of the oil pump, vacuum pump, fuel pump, and valve train, effectively consolidating functions and components.
Technical Paper

SUV Multi-Link Rigid Axle Control Links Optimization for Ride and Handling Improvement

2024-01-16
2024-26-0048
In automotive world role of suspension system is to absorb vibrations from the road, and to provide stability while vehicle is going over bumps or uneven roads, cornering, acceleration and braking etc. For body on frame SUVs which are typically characterized by high center of gravity, it is quite critical to find best balance in ensuring stability of the vehicle and having comfortable ride performance. Rigid axle rear suspension is quite a typical choice in such vehicles, wherein lower and upper control links are two important components subjected to lateral, longitudinal, and vertical loads. These links allow the vehicle to move smoothly throughout the entire range of suspension travel. Kinematics and compliance optimization of these links is a major factor in definition of ride-handling performance of the vehicle.
X