Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Validation of BHL Dipper Using CAE and Correlation with Test Data

2020-04-14
2020-01-0515
Use of Computer Aided Engineering (CAE) tools for virtual validation has become an essential part of every product development process. Using CAE tools, accurate prediction of potential failure locations is possible even before building the proto. This paper presents a detailed case study of virtual validation of Backhoe Loader (BHL) dipper arm using CAE tools (MBD: Multi Body Dynamics and FEA: Finite Element Analysis) and comparison of simulation results with test data. In this paper, we have illustrated the modelling of Backhoe Loader in MSc ADAMS software. The detail ADAMS model was created and validated. The component mass, Center of Gravity (C.G) and Mass Moment of Inertia (MOI) was taken from CAD data. Trenching is simulated by operating the different hydraulic cylinders of the BHL. Loader arm cylinders and stabilizer cylinders are operated to lift the machine tires above the ground level.
Technical Paper

Hybrid Optimization Methodology for Flexplate of Automatic Transmission

2020-04-14
2020-01-0916
For Automatic transmission application, crankshaft torque is transferred to torque converter through flex plate. As the flex plate has no functional requirement of storing energy as in case of Manual Transmission (MT) flywheel, flex plate design can be optimized to great extent. Flex plate structure must have compliance to allow the axial deformation of torque convertor due to ballooning pressure generated inside the converter. Flex plate experiences dynamic torque and centrifugal forces due to high rotational speed. It should have compliance to accommodate the assembly misalignments with torque convertor in both axial and radial directions. In this paper, sequential and hybrid optimization techniques are described to optimize the flex plate design with stress, stiffness and mass as design constraints. The load path, corrugation length and axial stiffness of flex plate captured accurately using this hybrid optimization.
Technical Paper

Gear Shift Quality Enhancement Using Sensitivity Analysis

2020-09-25
2020-28-0387
The global automotive industry is growing rapidly in recent years and the market competition has increased drastically. The engines with high torque delivery and deeper transmission ratios has become more and more common for a pleasant drivability experience. In a market highly driven from a comfort and an economic point of view, it is essential to develop a transmission and its components in an optimal way. One of the Unique Selling Point (USP) of a vehicle is the gear shift quality & it is highly important to have an optimum shift quality for an enhanced customer experience. Synchronizer plays a vital role for gear shifting performance in manual gearbox without any shifting assistance. The primary function of a synchronizer is to reduce the RPM difference between two gears before gear shifting with minimum time.
Technical Paper

Sensitivity Analysis and Experimental Verification of Automotive Transmission Gearbox Synchronizer Gear Shift Quality

2020-09-25
2020-28-0386
Synchronizer is the key element for the smoother gear shift operation in the constant mesh transmission. In the gear shift operation, the double bump occurs at the contact between the sleeve teeth and the clutch body ring teeth after the full synchronization. The double bump is random in nature and the dynamics is difficult to predict. The double bump gives a reaction force to the driver and affects the gear shift quality. This paper focus on the sensitivity analysis of the synchronizer ring index percentage and the clutch body ring asymmetric chamfer angle to reduce the occurrence and magnitude of the double bump. The system level simulation model is developed using 1D simulation tool. The modeling is done after complete declutching event so that there is no power supply to the transmission. The model can handle both upstream and downstream reflected inertia depending upon the gear shift event.
Journal Article

Lithium Ion Battery for Hybrid and Electric Mobility under Indian Ambient Conditions - A Perspective

2012-09-10
2012-01-1611
Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), Extended Range Electric Vehicles (EREVs), Battery Electric Vehicles' (BEVs) development is gaining traction across all geographies to help meet ever increasing fuel economy regulations and as a pathway to offset concerns due to climate change and improve the overall green quotient of automobiles. These technologies have primarily shifted towards Li-ion batteries for Energy Storage (due to energy density and mass). In order to make actual business sense of these technologies, of which, battery is a major cost driver, it is necessary for these batteries to provide similar performance and life expectancy across the operating and soak (storage) range of the vehicles, as well as provide the requirements at a competitive cost.
Technical Paper

Aerodynamic Drag Simulation and Validation of a Crossover

2010-04-12
2010-01-0757
Aerodynamic simulation using commercial CFD (Computational Fluid Dynamics) codes is now an integral part of the vehicle design process. Aerodynamic prediction and vehicle development program runs in parallel. This requires a good agreement between experimental measurements and CFD prediction of aerodynamic behavior of a vehicle. The comparison between experimental and simulation results show differences, as it may not be possible to replicate effect of all the wind tunnel parameters in the simulation. This paper presents the details of aerodynamic simulation process of a Crossover and its validation with the experimental results available from the wind tunnel tests. The results are compared for different configurations such as- closing the grille openings, removing the rearview mirror, adding ski-rack and using different tyres. This study also includes the effect of different wind speeds and yaw angles on the coefficient of drag.
Technical Paper

Experiences in improving the Low end performance of a Multi Purpose Vehicle (MPV) equipped with a common rail Diesel engine.

2009-12-13
2009-28-0008
Continually increasing customer demands and legislative Requirements regarding fuel economy, emissions, Performance, drive ability and comfort need to be met by every OEM's developing vehicles worldwide. There is a serious pressure to reduce CO2 emission from automotive application which contributes to around 15.9% of the total CO2 production based on the Surveys done time to time. In a developing market like India, many foreign players are entering with lots of option for offering to this market. The parameters of prime importance here are fuel efficiency with good drive ability and at the same time affordable price. Diesel engines are finding these benefits and attracting the buyer over its counterpart (Gasoline). The road condition and the driving pattern in India compared with developed countries differ to a major extent. In India, the Low speed uses are predominating in Cities and in Ghats.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

A Systematic Approach for Weight Reduction of BIW Panels through Optimization

2010-04-12
2010-01-0389
This paper describes application of Design of Experiments (DOE) technique and optimization for mass reduction of a Sports utility vehicle (SUV) body in white (BIW). Thickness of the body panels is taken as design variable for the study. The BIW global torsion, bending and front end modes are key indicators of the stiffness and mass of the structure. By considering the global modes the structural strength of the vehicle also gets accounted, since the vehicle is subjected to bending and twisting moments during proving ground test. The DOE is setup in a virtual environment and the results for different configurations are obtained through simulations. The results obtained from the DOE exercise are used to check the sensitivity of the panels. The panels are selected for mass reduction based on the analysis of the results. This final configuration is further evaluated for determining the stiffness and strength of the BIW.
Technical Paper

Innovative Method of Calibration to Meet BS4 Emission with Optimized Fuel Economy and Noise in a MPV with 2.5Lit Common Rail Diesel Engine

2011-01-19
2011-26-0028
In today's fast growing automobile world, the Emission limits are stringent; customer expectations of vehicle performance and Fuel economy are more. Achieving these parameters for the given engine are challenging task for any automobile engineers. BS4 Emission limits are 50% more stringent than BS3 limits and from April 2010 onwards, all passenger cars which will be selling in 13 metro cities in India should be BS4 emission compliant. In this paper, we have described how BS4 limits were achieved in a MPV with 2.49 l, 70kW Common Rail Direct Injection Turbocharged Diesel engine, with push rod. During Emission development, the following processes were followed to meet BS4 emission limits without sacrificing the engine performance, Fuel Economy and Noise. Selecting suitable hardwares like Turbocharger, EGR cooler at engine level to reduce NOx and Unburned Hydrocarbon Emissions with best Brake specific fuel consumption.
Technical Paper

Deriving the Compressed Accelerated Test Cycle from Measured Road Load Data

2012-04-16
2012-01-0063
Validation of vehicle structure is at the core of reduction of product development time. Robust and accelerated validation becomes an important task. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, manoeuvres and powertrain loads. Majority of the body in white and chassis structural failures are caused due to vertical loading. Measured road load data in test track have variable amplitude histories. These histories often contain a large percentage of small amplitude cycles which are non damaging. This paper describes a systematic approach to derive the compressed load cycle from the measured road load data in order to produce representative and meaningful yet economical load cycle for fatigue simulation. In-house flow was developed to derive the compressed load time history.
Technical Paper

In-house Design and Development of Pedestrian Protection Test Rig

2013-01-09
2013-26-0021
Regulations on pedestrian safety have been introduced globally since the year 1990 and in India it will have to be met around the year 2016. Process of making vehicle compliant to this regulation requires rigorous design development and testing. Testing involves propelling head-forms (Child and Adult) on bonnet at 35 km/h and 40 km/h and leg-forms (Upper and Lower) on bumper at 40 km/h according to the different National / International / NCAP regulatory requirements A pedestrian protection test rig has been indigenously designed and developed in-house to perform pedestrian protection impact testing in-house. The paper describes the salient features of the pedestrian protection test rig, its functioning, operation and process of acquiring the data for determination of the values required by crash safety regulations.
Technical Paper

Experimental Investigation of CRDI Engine Combustion and Gear-Shift Optimization to Meet Stringent Tail-Pipe Emissions for SUV Application

2013-01-09
2013-26-0133
Brazil has implemented a new emission regulation for Light commercial vehicles named PROCONVE L6. This regulation follows Environmental Protection Act (EPA) driving cycle; FTP75. This cycle simulates an urban route of 12.07 km with frequent stops. The maximum speed is 91.2 km/h and the average speed is 31.5 km/h. The regulation has proposed that the gear shift pattern of the manual transmission vehicle can be varied according to the manufacturer's specification. This has lead to the strategy of optimizing gear shift pattern without compromising diesel combustion and engine-out emission with optimized exhaust-gas treatment-devices. The emission is demonstrated to Brazilan Authorities with good margins.
Technical Paper

Ultra Low PM, Naturally Aspirated Diesel Engine Development Meeting Off-Highway Tier IV (Final) Emission Norms

2013-01-09
2013-26-0110
To meet stringent US EPA - TIER IV final emission norms, the diesel engine manufacturers are using various technology approaches. These approaches are varying from advanced in-cylinder combustion strategies to sophisticated exhaust after-treatment technologies. Generally, the proven technology concepts such as Common Rail System (CRS), efficient Turbocharged-Intercooled (TCI), and controlled-cooled EGR along with DOC-DPF in after treatment are used for emission controls. However, this approach will increase the engine cost in addition to the Packaging challenges for the existing vehicle layouts. This paper describes the successful attempt to meet US EPA TIER IV final (<37 kW power category) emission norms on a 2.7 l, Naturally Aspirated (NA) diesel engine for off-highway application. Use of high pressure CRS system, moderate Excess Air Ratio (λ) and optimum engine swept volume selection helped to retain fuel consumption at par with interim TIER IV engine.
Technical Paper

Experimental Determination of Rigid Body Properties of a Powertrain Unit for NVH Refinement

2014-04-01
2014-01-0039
This paper establishes quick and accurate methods to experimentally determine the rigid body properties of a powertrain unit namely, the centre of gravity, the moment of inertia and the torque roll axis and also the rigid body dynamics of mounting system such as the rigid body modes, kinetic energy distribution, and elastic roll axis. The centre of gravity is determined using single point suspension and laser pointer to locate the axis passing through the centre of gravity. A special unifilar pendulum test rig is developed for determining the moment of inertia where an accelerometer measures the rotational oscillations for a given time period and the moment of inertia is determined by solving a set of inertial ellipsoid equations. An easy method of reorienting the powertrain is demonstrated in this paper.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Generating a Real World Drive Cycle–A Statistical Approach

2018-04-03
2018-01-0325
Drive cycles have been an integral part of emission tests and virtual simulations for decades. A drive cycle is a representation of running behavior of a typical vehicle, involving the drive pattern, road characteristics and traffic characteristics. Drive cycles are typically used to assess vehicle performance parameters, perform system sizing and perform accelerated testing on a test bed or a virtual test environment, hence reducing the expenses on road tests. This study is an attempt to design a relatively robust process to generate a real world drive cycle. It is based on a Six Sigma design approach which utilizes data acquired from real world road trials. It explicitly describes the process of generating a drive cycle which closely represents the real world road drive scenario. The study also focuses on validation of the process by simulation and statistical analysis.
Technical Paper

Fuel Economy Measurement in Small Commercial Vehicles with Sub 1L BS6 Diesel Engines an Innovative Approach to Accurately Measure Fuel Economy

2022-03-29
2022-01-0575
In developing countries, the commercial vehicle industry is one of the key drivers for economic growth. The commercial vehicle industry in India is expected to reach 11,80,000 units by 2025 with a CAGR of 18% from CY 2020 to CY 2025 [1]. In the price sensitive segment of small commercial vehicles, it is imperative to incorporate accurate fuel economy measurement techniques during product development stage to deliver maximum value to the customer. In this approach, measuring the fuel consumption of small commercial vehicles in real world driving conditions in real time is one of the most critical aspects in engine calibration development and fine tuning. One of the challenges in measuring fuel consumption in sub 1 liter diesel engines is the very low fuel flow rate in the fuel feed line which keeps varying as per the driver demand.
Technical Paper

A Case Study on Durability Analysis of Automotive Lower Control Arm Using Self Transducer Approach

2018-04-03
2018-01-1208
A competitive market and shrinking product development cycle have forced automotive companies to move from conventional testing methods to virtual simulation techniques. Virtual durability simulation of any component requires determination of loads acting on the structure when tested on the proving ground. In conventional method wheel force transducers are used to extract loads at wheel center. Extracted wheel center forces are used to derive component loads through multi-body simulation. Another conventional approach is to use force transducers mounted directly on the component joineries where load needs to be extracted. Both the methods are costly and time-consuming. Sometimes it is not feasible to place a load cell in the system to measure hard point loads because of its complexities. In that case, it would be advantageous to use structure itself as a load transducer by strain gauging the component and use those strain values to extract hard point loads in virtual simulation.
Technical Paper

Agricultural Tractor Cabin Structure Design for Durability and Rollover Protective Structure Test

2015-01-14
2015-26-0163
A cabin on an agricultural tractor is meant to protect the operator from harsh environment, dust and provide an air conditioned space. As it is an enclosed space, cabin structure should be a crashworthiness structure and should not cause serious injury to operator in case of tractor roll over. There are International standard like OECD Code 4, SAE J2194 which regulates the crashworthiness of this protective structure. The roll-over protective structure (ROPS) is characterized by the provision of space for a clearance zone large enough to protect the operator in case of tractor overturn. None of the cabin parts should enter into the clearance zone for operator safety. In addition to meeting ROPS test criteria, the cabin structural strength should be optimized for the required tractor life. In this paper, simulation process has been established to design an agricultural tractor cabin structure and its mountings to meet the above requirements.
X