Refine Your Search

Topic

Author

Search Results

Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
Technical Paper

Investigations on the Effect of Synchronizer Strut Detent Groove Profile on Static and Dynamic Gear Shift Quality of a Manual Transmission

2020-09-25
2020-28-0319
Automotive manufacturers are constantly working towards enhancing the driving experience of the customers. In this context, improving the static and dynamic gear shift quality plays a major role in ensuring a pleasant and comfortable driving experience. Moreover, the gear shift quality of any manual transmission is mainly defined by the design of the synchronizer system. The synchronizer sleeve strut detent groove profile plays a vital role in defining the performance of the synchronizer system by generating the minimum required pre-synchronization force. This force is important to move the outer synchronizer ring (blocker ring) to the required index position and to wipe-out the oil from the conical friction surfaces to build rapid high cone torque. Both these functional requirements are extremely critical to have a smooth and quick synchronization of the rotating parts under dynamic shift conditions.
Journal Article

Lithium Ion Battery for Hybrid and Electric Mobility under Indian Ambient Conditions - A Perspective

2012-09-10
2012-01-1611
Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), Extended Range Electric Vehicles (EREVs), Battery Electric Vehicles' (BEVs) development is gaining traction across all geographies to help meet ever increasing fuel economy regulations and as a pathway to offset concerns due to climate change and improve the overall green quotient of automobiles. These technologies have primarily shifted towards Li-ion batteries for Energy Storage (due to energy density and mass). In order to make actual business sense of these technologies, of which, battery is a major cost driver, it is necessary for these batteries to provide similar performance and life expectancy across the operating and soak (storage) range of the vehicles, as well as provide the requirements at a competitive cost.
Technical Paper

Strategy to Meet Euro IV Emission Norms on Common Rail Sports Utility Vehicle

2007-04-16
2007-01-1082
One of the key factors driving the automotive world is emission regulations. Zero emissions, clean engine concept are some buzz words being used extensively in the automotive industry. Stringent emission regulations throughout the world mean that automotive manufacturers have to pay attention to minimizing engine out emissions. Electronic engine management systems allow flexibility in controlling injection parameters & provide a means for optimizing engine performance. This paper presents work carried out on a 2.49L common rail direct injection diesel engine to achieve Euro IV emission targets. Without after-treatment devices, it is difficult for engine management alone to meet Euro IV and further stringent emissions. To overcome this, two type of after-treatment technologies are adopted by OEM's Selective Catalyst Reduction Diesel Particulate Filter Huge amount of research is being done on the application, cost aspect and availability of component samples for series production.
Technical Paper

Application of Dual Density Light Weight Dash Acoustic Insulators in SUVs

2009-05-19
2009-01-2143
In the recent past a lot of emphasis is given for the overall weight reduction of the sound package used in the vehicles. The paper presents a study of one of such materials used in the automotive market. The dash panel is a primary area for the engine noise transmission to the cabin. Hence the material selection of the dash inner acoustic insulation is critical. In the conventional method a barrier (EVA) and a decoupler (foam) is used. In the conventional design the surface weight of the barrier has to be substantially high for the dash insulation to perform effectively and hence adds to more weight. In the present application of light weight material also known as dual density absorbers and barrier is used for the dash acoustic insulator. The study reveals the good acoustic performance of the light weight dash mat in terms of passenger cabin noise reduction and improved sound quality along with weight reduction.
Technical Paper

Experiences in improving the Low end performance of a Multi Purpose Vehicle (MPV) equipped with a common rail Diesel engine.

2009-12-13
2009-28-0008
Continually increasing customer demands and legislative Requirements regarding fuel economy, emissions, Performance, drive ability and comfort need to be met by every OEM's developing vehicles worldwide. There is a serious pressure to reduce CO2 emission from automotive application which contributes to around 15.9% of the total CO2 production based on the Surveys done time to time. In a developing market like India, many foreign players are entering with lots of option for offering to this market. The parameters of prime importance here are fuel efficiency with good drive ability and at the same time affordable price. Diesel engines are finding these benefits and attracting the buyer over its counterpart (Gasoline). The road condition and the driving pattern in India compared with developed countries differ to a major extent. In India, the Low speed uses are predominating in Cities and in Ghats.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

Development of Common Rail Engine for LCV BS III and a Step Towards BS IV Emission Compliance

2011-01-19
2011-26-0032
This work discusses about the emission development of a 4 cylinder inline 3.3 liter CRDe to meet BS III emission norms applicable to 3.5 Ton and above category and upgradable to BS IV emission by suitable after treatment. This engine is developed from a 3.2l mechanical pump engine. During development the focus was on the usage of higher swept volume, selection of engine hardware like piston bowl, turbocharger, injectors and optimization of the injection parameters. A cost-effective solution for meeting the BS III norms in the LCV category without application of EGR and exhaust after treatment even though there is 15% increase of the power rating and 10% increase in Peak torque of the engine. Injection parameters like injection timing, injection quantity and pilot injection were optimized to meet the emission target.
Technical Paper

Innovative Method of Calibration to Meet BS4 Emission with Optimized Fuel Economy and Noise in a MPV with 2.5Lit Common Rail Diesel Engine

2011-01-19
2011-26-0028
In today's fast growing automobile world, the Emission limits are stringent; customer expectations of vehicle performance and Fuel economy are more. Achieving these parameters for the given engine are challenging task for any automobile engineers. BS4 Emission limits are 50% more stringent than BS3 limits and from April 2010 onwards, all passenger cars which will be selling in 13 metro cities in India should be BS4 emission compliant. In this paper, we have described how BS4 limits were achieved in a MPV with 2.49 l, 70kW Common Rail Direct Injection Turbocharged Diesel engine, with push rod. During Emission development, the following processes were followed to meet BS4 emission limits without sacrificing the engine performance, Fuel Economy and Noise. Selecting suitable hardwares like Turbocharger, EGR cooler at engine level to reduce NOx and Unburned Hydrocarbon Emissions with best Brake specific fuel consumption.
Technical Paper

Integration of 1D and 3D CFD Software for Cabin Cool Down Simulation

2018-04-03
2018-01-0773
This study presents a method for a cool down simulation of passenger compartments. The purpose was to integrate the 3D Computational Fluid Dynamics (CFD) software StarCCM+ with the 1D thermal management software KULI. The targets were to achieve accurate prediction of temperature diffusion inside the cabin for a transient cycle simultaneously reducing the modelling effort and CPU-time consumption. The 1D simulation model was developed in KULI and the flow field data required to simulate mass flow and diffusion inside the cabin was implemented from Star CCM+. The simulation model consists of a multi-zone cabin and models the complete refrigerant circuit consisting of evaporator, condenser, Thermal Expansion Valve (TXV) and compressor. This paper describes the process flow, definition of the inputs required and finally the validation of the simulation data with experiments.
Technical Paper

Evaluation of Vehicle Systems Structural Durability Using PSD Based Fatigue Life Approach

2012-04-16
2012-01-0953
In current competitive environment automobile industry is under heavy pressure to reduce time to market. First time right design is an important aspect to achieve the time and cost targets. CAE is a tool which helps designer to come up with first time right design. This also calls for high degree of confidence in CAE simulation results which can only be achieved by undertaking correlation exercises. In automobiles most of the structures are subjected to vibration from dynamic loads. All the dynamic road loads are random in nature and can be very easily expressed in terms of power spectral density functions. In the current scenario structural durability of the parts subjected to vibration is done partially through modal performance and partially though frequency response analysis. The only question that arises is what amplitude to use at what frequency and how to map all the accelerated tests dynamic load frequency spectrum to simulation domain.
Technical Paper

Intelligent Exhaust Gas Recirculation Governing for Robust BS-III Compliant 2.5 l Mechanical Pump Drive Diesel Vehicle

2013-01-09
2013-26-0052
October 2010 has brought major change over in Indian Auto Industries, with all India going BS-III Emission compliant (Metro with BS-IV Emission norms). During that time majority of the utility segment vehicles were having diesel engine with simple mechanical fuel injection system. To make these vehicles BS-III compliance cost effectively, with same fuel economy and reliability, was a challenging task. To enable this, Exhaust Gas Recirculation (EGR) through simple pneumatic EGR valve was the optimum technique. The EGR valve was controlled by means of simple Electronic Control Unit (ECU). Limitations of mechanical diesel fuel injection pump, stringent emission regulations, coupled with production constraints and variations, calls for robust control logics for governing EGR. The present work describes the robust strategies and logics of intelligent EGR governing of a 2.5 l, four Cylinder turbocharged, mechanical pump diesel engine for a BS-III compliant multi utility vehicle.
Technical Paper

Simultaneous Reduction of NOx and Soot Using Early Post Injection

2013-01-09
2013-26-0055
The effect of early post injection in diesel engine was studied with respect to engine out emissions and torque output. Initial tests indicated that there is significant reduction of soot for same NOx or with reduced NOx due to early Post Injection (POI) in traditional high speed diesel engine depending on various operating conditions. Further studies indicated that varying the post injection quantity and timing improved engine out NOx and soot emissions significantly and that the degree of this influence depends on speed and load of the engine. Additional investigations like study of heat release curve and air by fuel ratio were done to understand this effect completely.
Technical Paper

Development of Hydrogen Powered Three Wheeler Engine

2013-01-09
2013-26-0002
This article is focused on the development of hydrogen fuelled engine with detailed exposure on its derivation from base Compressed Natural Gas (CNG) engine to discuss the phenomenon on backfiring, control strategies (to avoid knocking and backfiring) and its performance, emission characteristics. In this work, timed manifold injection system was developed to have efficient control over the fuel supply. To achieve the best performance and emission out of the engine, governing parameter like injector pulse width and ignition timing were optimized at full load, part load and idling. For comparison of the results with the same engine experiments were also conducted with base fuel CNG and gasoline using the conventional fuel supply system. It was experimentally observed that engine when fuelled with Hydrogen (H2) produces less maximum power compared to CNG and gasoline.
Technical Paper

Experimental Investigation of CRDI Engine Combustion and Gear-Shift Optimization to Meet Stringent Tail-Pipe Emissions for SUV Application

2013-01-09
2013-26-0133
Brazil has implemented a new emission regulation for Light commercial vehicles named PROCONVE L6. This regulation follows Environmental Protection Act (EPA) driving cycle; FTP75. This cycle simulates an urban route of 12.07 km with frequent stops. The maximum speed is 91.2 km/h and the average speed is 31.5 km/h. The regulation has proposed that the gear shift pattern of the manual transmission vehicle can be varied according to the manufacturer's specification. This has lead to the strategy of optimizing gear shift pattern without compromising diesel combustion and engine-out emission with optimized exhaust-gas treatment-devices. The emission is demonstrated to Brazilan Authorities with good margins.
Technical Paper

Studies on Neutral Gear Rattle in Early Stage Design

2013-01-09
2013-26-0109
In today's competitive automobile market, customers have become more sensitive towards NVH behavior of the vehicle than ever. The noise generated by gear rattle is one of the main contributors towards customer's overall NVH perception. This paper adopts a model based design approach towards gear rattle phenomenon to predict the tendency of gear rattle at a very early stage of design. This up-front understanding of gear rattle will potentially reduce the expensive design changes and iterations at later stages. A single unloaded gear pair is modeled in AMESim software, which is then extended to the complete gearbox in neutral condition. The sensitivity of rattle index for different input parameters is studied. Analysis on uncertainty propagation is carried out to find the rattle index distribution for Gaussian variation of input parameters. A novel rattle index based on Jerk is proposed and compared with the existing index.
Technical Paper

Ultra Low PM, Naturally Aspirated Diesel Engine Development Meeting Off-Highway Tier IV (Final) Emission Norms

2013-01-09
2013-26-0110
To meet stringent US EPA - TIER IV final emission norms, the diesel engine manufacturers are using various technology approaches. These approaches are varying from advanced in-cylinder combustion strategies to sophisticated exhaust after-treatment technologies. Generally, the proven technology concepts such as Common Rail System (CRS), efficient Turbocharged-Intercooled (TCI), and controlled-cooled EGR along with DOC-DPF in after treatment are used for emission controls. However, this approach will increase the engine cost in addition to the Packaging challenges for the existing vehicle layouts. This paper describes the successful attempt to meet US EPA TIER IV final (<37 kW power category) emission norms on a 2.7 l, Naturally Aspirated (NA) diesel engine for off-highway application. Use of high pressure CRS system, moderate Excess Air Ratio (λ) and optimum engine swept volume selection helped to retain fuel consumption at par with interim TIER IV engine.
Technical Paper

Diagnosis and Elimination of Vehicle Shudder in a Sports Utility Vehicle

2013-01-09
2013-26-0090
Ground clearance plays an important role in Sports Utility Vehicles (SUV). Designers are good in designing their own systems but when it comes to integration of systems, the impact of one system on others and cascading effects become the major problems in full vehicle development. The test vehicle is a monocoque construction with power train in transverse (east-west) direction. Vehicle shudder is observed in lateral direction exciting the steering column, floor during the low gear power train run up in Wide Open Throttle (WOT) condition. The shudder is felt predominantly on the front half of the vehicle. Being a low frequency phenomenon with high energy it becomes critical and the phenomenon is easily perceivable by passenger. The paper discusses the measurement and analysis procedures to identify the root cause of shudder. Different modifications are tried out based on the analysis and an optimum solution is selected.
Technical Paper

Experimental Approach to Improve the Door Slam Noise Quality in Utility Vehicles

2013-01-09
2013-26-0095
The customer perception about the door slam noise and its feel would indicate the brand image of the car. In this paper the authors have made an effort to improve the door slam noise quality of the vehicle, which is currently in production. This paper describes the probable areas in the door to improve the slam noise quality by attempting modifications in the door design factors, such as door alignments, door panel stiffness, door trims, window glass rattle, latch striker alignment, door seals, air extractor. Since the door closing event is a transient phenomenon, it requires special tools such as wavelet transforms, Zwicker loudness to understand the slam events precisely. Subjective jury evaluations have been conducted to understand the effect of these modifications and rank the modifications based on their contributions to the door slam quality.
Technical Paper

Seat Squeak Measurement and Diagnosis

2013-01-09
2013-26-0094
BSR (Buzz, Squeak and Rattle) is one of the oldest concerns in automobiles which directly reflect the build, assembly and manufacturing quality of a vehicle. In a cabin all the areas where there is relative motion between two components, such as trims, instrument panel and seats, are prone to squeak. This paper explains the study of seat squeak measurement and diagnosis which is a major concern for one of the products which is already in the market. Since squeak is a friction induced non stationary phenomenon, lot of effort was required to generate squeak in both component as well as vehicle level. At component level, electrodynamic shaker was extensively used for generation of squeak signals. In Vehicle level, driving through different road patterns, pave track and forced excitation on four posters are performed for generation of squeak signals. In this paper usage of wavelet and Zwikker loudness are explained for the diagnosis of seat squeak to identify the problematic frequencies.
X