Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
Journal Article

Lithium Ion Battery for Hybrid and Electric Mobility under Indian Ambient Conditions - A Perspective

2012-09-10
2012-01-1611
Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), Extended Range Electric Vehicles (EREVs), Battery Electric Vehicles' (BEVs) development is gaining traction across all geographies to help meet ever increasing fuel economy regulations and as a pathway to offset concerns due to climate change and improve the overall green quotient of automobiles. These technologies have primarily shifted towards Li-ion batteries for Energy Storage (due to energy density and mass). In order to make actual business sense of these technologies, of which, battery is a major cost driver, it is necessary for these batteries to provide similar performance and life expectancy across the operating and soak (storage) range of the vehicles, as well as provide the requirements at a competitive cost.
Technical Paper

Application of Dual Density Light Weight Dash Acoustic Insulators in SUVs

2009-05-19
2009-01-2143
In the recent past a lot of emphasis is given for the overall weight reduction of the sound package used in the vehicles. The paper presents a study of one of such materials used in the automotive market. The dash panel is a primary area for the engine noise transmission to the cabin. Hence the material selection of the dash inner acoustic insulation is critical. In the conventional method a barrier (EVA) and a decoupler (foam) is used. In the conventional design the surface weight of the barrier has to be substantially high for the dash insulation to perform effectively and hence adds to more weight. In the present application of light weight material also known as dual density absorbers and barrier is used for the dash acoustic insulator. The study reveals the good acoustic performance of the light weight dash mat in terms of passenger cabin noise reduction and improved sound quality along with weight reduction.
Technical Paper

Experiences in improving the Low end performance of a Multi Purpose Vehicle (MPV) equipped with a common rail Diesel engine.

2009-12-13
2009-28-0008
Continually increasing customer demands and legislative Requirements regarding fuel economy, emissions, Performance, drive ability and comfort need to be met by every OEM's developing vehicles worldwide. There is a serious pressure to reduce CO2 emission from automotive application which contributes to around 15.9% of the total CO2 production based on the Surveys done time to time. In a developing market like India, many foreign players are entering with lots of option for offering to this market. The parameters of prime importance here are fuel efficiency with good drive ability and at the same time affordable price. Diesel engines are finding these benefits and attracting the buyer over its counterpart (Gasoline). The road condition and the driving pattern in India compared with developed countries differ to a major extent. In India, the Low speed uses are predominating in Cities and in Ghats.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

Front Loading In-Vehicle Traffic Light Visibility Requirements for Driver as per Indian Road Standards

2017-07-10
2017-28-1932
Traffic awareness of the driver is one of the prime focus in terms of pedestrian and road safety. Driver experience plays a significant role and driving requires careful attention to changing environments both within and outside the vehicle. Any lapse in driver attention from the primary task of driving could potentially lead to an accident. It is observed that, lack of attention on the ongoing traffic and ignorant about the traffic information such as traffic lights, road signs, traffic rules and regulations are major cause for the vehicle crash. Traffic signals & signage are the most appropriate choice of traffic control for the intersection, it is important to ensure that driver can see the information far away from the intersection so that he/she can stop safely upon viewing the yellow and red display. Then, upon viewing the signal operations and conditions the motorist can stop his/her vehicle successfully before entering the intersection.
Technical Paper

Deriving the Compressed Accelerated Test Cycle from Measured Road Load Data

2012-04-16
2012-01-0063
Validation of vehicle structure is at the core of reduction of product development time. Robust and accelerated validation becomes an important task. In service the vehicle is subjected to variable loads. These act upon the components that originate from road roughness, manoeuvres and powertrain loads. Majority of the body in white and chassis structural failures are caused due to vertical loading. Measured road load data in test track have variable amplitude histories. These histories often contain a large percentage of small amplitude cycles which are non damaging. This paper describes a systematic approach to derive the compressed load cycle from the measured road load data in order to produce representative and meaningful yet economical load cycle for fatigue simulation. In-house flow was developed to derive the compressed load time history.
Technical Paper

Evaluation of Vehicle Systems Structural Durability Using PSD Based Fatigue Life Approach

2012-04-16
2012-01-0953
In current competitive environment automobile industry is under heavy pressure to reduce time to market. First time right design is an important aspect to achieve the time and cost targets. CAE is a tool which helps designer to come up with first time right design. This also calls for high degree of confidence in CAE simulation results which can only be achieved by undertaking correlation exercises. In automobiles most of the structures are subjected to vibration from dynamic loads. All the dynamic road loads are random in nature and can be very easily expressed in terms of power spectral density functions. In the current scenario structural durability of the parts subjected to vibration is done partially through modal performance and partially though frequency response analysis. The only question that arises is what amplitude to use at what frequency and how to map all the accelerated tests dynamic load frequency spectrum to simulation domain.
Technical Paper

Studies on Neutral Gear Rattle in Early Stage Design

2013-01-09
2013-26-0109
In today's competitive automobile market, customers have become more sensitive towards NVH behavior of the vehicle than ever. The noise generated by gear rattle is one of the main contributors towards customer's overall NVH perception. This paper adopts a model based design approach towards gear rattle phenomenon to predict the tendency of gear rattle at a very early stage of design. This up-front understanding of gear rattle will potentially reduce the expensive design changes and iterations at later stages. A single unloaded gear pair is modeled in AMESim software, which is then extended to the complete gearbox in neutral condition. The sensitivity of rattle index for different input parameters is studied. Analysis on uncertainty propagation is carried out to find the rattle index distribution for Gaussian variation of input parameters. A novel rattle index based on Jerk is proposed and compared with the existing index.
Technical Paper

Diagnosis and Elimination of Vehicle Shudder in a Sports Utility Vehicle

2013-01-09
2013-26-0090
Ground clearance plays an important role in Sports Utility Vehicles (SUV). Designers are good in designing their own systems but when it comes to integration of systems, the impact of one system on others and cascading effects become the major problems in full vehicle development. The test vehicle is a monocoque construction with power train in transverse (east-west) direction. Vehicle shudder is observed in lateral direction exciting the steering column, floor during the low gear power train run up in Wide Open Throttle (WOT) condition. The shudder is felt predominantly on the front half of the vehicle. Being a low frequency phenomenon with high energy it becomes critical and the phenomenon is easily perceivable by passenger. The paper discusses the measurement and analysis procedures to identify the root cause of shudder. Different modifications are tried out based on the analysis and an optimum solution is selected.
Technical Paper

Experimental Approach to Improve the Door Slam Noise Quality in Utility Vehicles

2013-01-09
2013-26-0095
The customer perception about the door slam noise and its feel would indicate the brand image of the car. In this paper the authors have made an effort to improve the door slam noise quality of the vehicle, which is currently in production. This paper describes the probable areas in the door to improve the slam noise quality by attempting modifications in the door design factors, such as door alignments, door panel stiffness, door trims, window glass rattle, latch striker alignment, door seals, air extractor. Since the door closing event is a transient phenomenon, it requires special tools such as wavelet transforms, Zwicker loudness to understand the slam events precisely. Subjective jury evaluations have been conducted to understand the effect of these modifications and rank the modifications based on their contributions to the door slam quality.
Technical Paper

Seat Squeak Measurement and Diagnosis

2013-01-09
2013-26-0094
BSR (Buzz, Squeak and Rattle) is one of the oldest concerns in automobiles which directly reflect the build, assembly and manufacturing quality of a vehicle. In a cabin all the areas where there is relative motion between two components, such as trims, instrument panel and seats, are prone to squeak. This paper explains the study of seat squeak measurement and diagnosis which is a major concern for one of the products which is already in the market. Since squeak is a friction induced non stationary phenomenon, lot of effort was required to generate squeak in both component as well as vehicle level. At component level, electrodynamic shaker was extensively used for generation of squeak signals. In Vehicle level, driving through different road patterns, pave track and forced excitation on four posters are performed for generation of squeak signals. In this paper usage of wavelet and Zwikker loudness are explained for the diagnosis of seat squeak to identify the problematic frequencies.
Technical Paper

Tractor Operator Objective Response to Seat Vibration in Real World Usage Pattern

2013-01-09
2013-26-0097
Whole Body Vibration (WBV) of tractors was measured on different surfaces in real world usage pattern of Indian customers on tractors of various capacities. Vibration levels were measured at the interface of the seat and the operator, on the seat base/floor and on the head. The mean weighted Root Mean Square (RMS) values along the different axes, the vector sum of weighted RMS values along the three orthogonal axes, the crest factor, Vibration Dose Value (VDV) and 8 h exposure levels were calculated according to ISO 2631-1. In addition to the above parameters, the transmissibility between the seat base and the seat interface (SEAT) and between the seat interface and the operator head (TR) were also calculated. Finally, these parameters were correlated with the subjective feel of customers which was captured through suitable questionnaires. It is observed that the Indian tractor operators are exposed to WBV that exceeds the cautionary boundaries set in place by the ISO 2631-1.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

Generating a Real World Drive Cycle–A Statistical Approach

2018-04-03
2018-01-0325
Drive cycles have been an integral part of emission tests and virtual simulations for decades. A drive cycle is a representation of running behavior of a typical vehicle, involving the drive pattern, road characteristics and traffic characteristics. Drive cycles are typically used to assess vehicle performance parameters, perform system sizing and perform accelerated testing on a test bed or a virtual test environment, hence reducing the expenses on road tests. This study is an attempt to design a relatively robust process to generate a real world drive cycle. It is based on a Six Sigma design approach which utilizes data acquired from real world road trials. It explicitly describes the process of generating a drive cycle which closely represents the real world road drive scenario. The study also focuses on validation of the process by simulation and statistical analysis.
Technical Paper

Low Cost Standalone Unit for Static Bending Lamp Operation

2013-09-24
2013-01-2390
The present invention relates to automobile headlamps, to be more precise static bending lamps. It is well experienced that driving at night times can be quite hectic as the ordinary headlamps do not trace the trajectory of the vehicle. This brought the idea of bending lamps; two different approaches have evolved for the same functionality, either to turn the light source or a projector, called dynamic bending and the second approach is to provide a secondary lamp at the corner focusing location for fulfilling the purpose. The present systems rely on the steering wheel sensor and the vehicle speed data for control. This requires the system to have a CAN transceiver module adding to the cost. In this paper, we will be focusing on static bending lamp in which the fixed-focus positioned lamp will be used for lighting the required area, moreover this gives design a more robustness and cost beneficial control system for the static bending lamp.
Technical Paper

Life Estimation and Thermal Management of a 48V Mild-Hybrid Battery Pack

2019-04-02
2019-01-1001
The 48V mild-Hybrid system uses a 48V Lithium - Ion battery pack to boost the engine performance, to harness recuperative energy and to supply the accessory boardnet power requirement. Thermal management of the 48V battery pack is critical for its optimal utilization to realize the mild hybrid functionality, to meet CO2 reduction targets and useful life particularly under usage in hot ambient conditions. This paper discusses the various challenges and options of thermal management for the 48V battery pack based on the usage pattern and environmental conditions. The lifetime for a passively cooled battery pack is estimated for a typical Indian usage pattern. Active-air cooling is evaluated for the thermal management of the 48V mild-Hybrid battery pack. The tradeoffs are compared in terms of availability of hybrid functions and battery life.
Technical Paper

Prediction of Engine Thermal Behavior during Emission Cycle Using 1D Four Point Mass Model

2016-04-05
2016-01-0197
The traditional approach of engine thermal behavior of engine during startup has largely been dependent on experimental studies and high fidelity simulations like CFD. However, these techniques require considerable effort, cost and time. The low fidelity simulations validated with experimental results are becoming more popular due to their ease in handling the several parameters such as cost effectiveness and quick predictive results. A four point mass model of engine thermal behavior during cold start has been developed to study the engine warm up temperature behavior. The four point mass model considers the lumped mass of coolant, mass of engine directly associated with the coolant, mass of engine oil and mass of engine directly associated with the engine oil. The advantage of four point model is to predict the coolant temperature as well as lubricant temperature during the transient warm up cycle of the engine.
Technical Paper

Idle Shake Simulation and Optimization through Digital Car Model

2015-06-15
2015-01-2368
Idle NVH (Noise Vibration Harshness) is one of the major quality parameters that customer looks into while buying the vehicle. Idle shake is undesirable vibrations generated from Engine while it is in idling condition. These low frequency vibrations affects both driver and passenger comfort. Vibrations are perceived by customer through the interfaces such as the seats, floor, and steering wheel. The frequencies of vibration felt by customer ranges between 10-30 Hz and varies based on engine configurations. There are two factors that are critical to the vehicle idle NVH quality, 1. Engine excitation force and 2. Vehicle sensitivity to excitation forces (Transfer function). Even though the engine excitation forces are governed by cylinder combustion process inside the cylinder and engine mass, it is also largely affected by how well the engine and transmission are supported on vehicle through isolators.
X