Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
Technical Paper

Investigations on the Effect of Synchronizer Strut Detent Groove Profile on Static and Dynamic Gear Shift Quality of a Manual Transmission

2020-09-25
2020-28-0319
Automotive manufacturers are constantly working towards enhancing the driving experience of the customers. In this context, improving the static and dynamic gear shift quality plays a major role in ensuring a pleasant and comfortable driving experience. Moreover, the gear shift quality of any manual transmission is mainly defined by the design of the synchronizer system. The synchronizer sleeve strut detent groove profile plays a vital role in defining the performance of the synchronizer system by generating the minimum required pre-synchronization force. This force is important to move the outer synchronizer ring (blocker ring) to the required index position and to wipe-out the oil from the conical friction surfaces to build rapid high cone torque. Both these functional requirements are extremely critical to have a smooth and quick synchronization of the rotating parts under dynamic shift conditions.
Technical Paper

Experiences in improving the Low end performance of a Multi Purpose Vehicle (MPV) equipped with a common rail Diesel engine.

2009-12-13
2009-28-0008
Continually increasing customer demands and legislative Requirements regarding fuel economy, emissions, Performance, drive ability and comfort need to be met by every OEM's developing vehicles worldwide. There is a serious pressure to reduce CO2 emission from automotive application which contributes to around 15.9% of the total CO2 production based on the Surveys done time to time. In a developing market like India, many foreign players are entering with lots of option for offering to this market. The parameters of prime importance here are fuel efficiency with good drive ability and at the same time affordable price. Diesel engines are finding these benefits and attracting the buyer over its counterpart (Gasoline). The road condition and the driving pattern in India compared with developed countries differ to a major extent. In India, the Low speed uses are predominating in Cities and in Ghats.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Technical Paper

Intake System Design Approach for Turbocharged MPFI SI Engine

2011-01-19
2011-26-0088
The automotive industry is currently facing the challenge of significantly stringent requirements regarding CO₂ emission and fuel economy coming from both legislations and customer demand. Advanced engine technologies play a vital role for downsizing of gasoline engine. The development of key design technologies for high efficiency gasoline engines is required for the improvement of competitive power in the global automobile industry. This paper focused on effect of geometry of intake manifold of gas exchange process and consequently the performance of the engine. Specially, the optimal design technologies for the intake manifold and intake port shape must be established for high performance, increasingly stringent fuel economy and emission regulations. Space in vehicle or packaging constraints and cost are also important factors while consideration of the design.
Technical Paper

Innovative Method of Calibration to Meet BS4 Emission with Optimized Fuel Economy and Noise in a MPV with 2.5Lit Common Rail Diesel Engine

2011-01-19
2011-26-0028
In today's fast growing automobile world, the Emission limits are stringent; customer expectations of vehicle performance and Fuel economy are more. Achieving these parameters for the given engine are challenging task for any automobile engineers. BS4 Emission limits are 50% more stringent than BS3 limits and from April 2010 onwards, all passenger cars which will be selling in 13 metro cities in India should be BS4 emission compliant. In this paper, we have described how BS4 limits were achieved in a MPV with 2.49 l, 70kW Common Rail Direct Injection Turbocharged Diesel engine, with push rod. During Emission development, the following processes were followed to meet BS4 emission limits without sacrificing the engine performance, Fuel Economy and Noise. Selecting suitable hardwares like Turbocharger, EGR cooler at engine level to reduce NOx and Unburned Hydrocarbon Emissions with best Brake specific fuel consumption.
Technical Paper

Integration of 1D and 3D CFD Software for Cabin Cool Down Simulation

2018-04-03
2018-01-0773
This study presents a method for a cool down simulation of passenger compartments. The purpose was to integrate the 3D Computational Fluid Dynamics (CFD) software StarCCM+ with the 1D thermal management software KULI. The targets were to achieve accurate prediction of temperature diffusion inside the cabin for a transient cycle simultaneously reducing the modelling effort and CPU-time consumption. The 1D simulation model was developed in KULI and the flow field data required to simulate mass flow and diffusion inside the cabin was implemented from Star CCM+. The simulation model consists of a multi-zone cabin and models the complete refrigerant circuit consisting of evaporator, condenser, Thermal Expansion Valve (TXV) and compressor. This paper describes the process flow, definition of the inputs required and finally the validation of the simulation data with experiments.
Technical Paper

Evaluation of Vehicle Systems Structural Durability Using PSD Based Fatigue Life Approach

2012-04-16
2012-01-0953
In current competitive environment automobile industry is under heavy pressure to reduce time to market. First time right design is an important aspect to achieve the time and cost targets. CAE is a tool which helps designer to come up with first time right design. This also calls for high degree of confidence in CAE simulation results which can only be achieved by undertaking correlation exercises. In automobiles most of the structures are subjected to vibration from dynamic loads. All the dynamic road loads are random in nature and can be very easily expressed in terms of power spectral density functions. In the current scenario structural durability of the parts subjected to vibration is done partially through modal performance and partially though frequency response analysis. The only question that arises is what amplitude to use at what frequency and how to map all the accelerated tests dynamic load frequency spectrum to simulation domain.
Technical Paper

Intelligent Exhaust Gas Recirculation Governing for Robust BS-III Compliant 2.5 l Mechanical Pump Drive Diesel Vehicle

2013-01-09
2013-26-0052
October 2010 has brought major change over in Indian Auto Industries, with all India going BS-III Emission compliant (Metro with BS-IV Emission norms). During that time majority of the utility segment vehicles were having diesel engine with simple mechanical fuel injection system. To make these vehicles BS-III compliance cost effectively, with same fuel economy and reliability, was a challenging task. To enable this, Exhaust Gas Recirculation (EGR) through simple pneumatic EGR valve was the optimum technique. The EGR valve was controlled by means of simple Electronic Control Unit (ECU). Limitations of mechanical diesel fuel injection pump, stringent emission regulations, coupled with production constraints and variations, calls for robust control logics for governing EGR. The present work describes the robust strategies and logics of intelligent EGR governing of a 2.5 l, four Cylinder turbocharged, mechanical pump diesel engine for a BS-III compliant multi utility vehicle.
Technical Paper

Development of Hydrogen Powered Three Wheeler Engine

2013-01-09
2013-26-0002
This article is focused on the development of hydrogen fuelled engine with detailed exposure on its derivation from base Compressed Natural Gas (CNG) engine to discuss the phenomenon on backfiring, control strategies (to avoid knocking and backfiring) and its performance, emission characteristics. In this work, timed manifold injection system was developed to have efficient control over the fuel supply. To achieve the best performance and emission out of the engine, governing parameter like injector pulse width and ignition timing were optimized at full load, part load and idling. For comparison of the results with the same engine experiments were also conducted with base fuel CNG and gasoline using the conventional fuel supply system. It was experimentally observed that engine when fuelled with Hydrogen (H2) produces less maximum power compared to CNG and gasoline.
Technical Paper

Ultra Low PM, Naturally Aspirated Diesel Engine Development Meeting Off-Highway Tier IV (Final) Emission Norms

2013-01-09
2013-26-0110
To meet stringent US EPA - TIER IV final emission norms, the diesel engine manufacturers are using various technology approaches. These approaches are varying from advanced in-cylinder combustion strategies to sophisticated exhaust after-treatment technologies. Generally, the proven technology concepts such as Common Rail System (CRS), efficient Turbocharged-Intercooled (TCI), and controlled-cooled EGR along with DOC-DPF in after treatment are used for emission controls. However, this approach will increase the engine cost in addition to the Packaging challenges for the existing vehicle layouts. This paper describes the successful attempt to meet US EPA TIER IV final (<37 kW power category) emission norms on a 2.7 l, Naturally Aspirated (NA) diesel engine for off-highway application. Use of high pressure CRS system, moderate Excess Air Ratio (λ) and optimum engine swept volume selection helped to retain fuel consumption at par with interim TIER IV engine.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

A Simple Mechanism for AC Compressor Operation

2013-11-27
2013-01-2879
One of the most essential components of automotive HVAC system is compressor. In a vehicle it is directly mounted on the engine. It derives power from the engine feed system to keep refrigerant moving in the HVAC system of the vehicle. It is also essential to complete the vapor compression cycle. During the operation, it causes considerable load on the engine and thus results in lower fuel efficiency and higher pollution. There are several types of compressors available globally. According to construction it can be classified as reciprocating piston type, scroll type and rotary vane type. The reciprocating piston types of compressors are further classified as fixed displacement and variable displacement. Normally the fixed displacement compressors have good idling cooling performance, but it increases the load on the engine. To reduce the load on the engine and to have good idling cooling performance, generally a variable displacement compressor is used.
Technical Paper

Low Cost Standalone Unit for Static Bending Lamp Operation

2013-09-24
2013-01-2390
The present invention relates to automobile headlamps, to be more precise static bending lamps. It is well experienced that driving at night times can be quite hectic as the ordinary headlamps do not trace the trajectory of the vehicle. This brought the idea of bending lamps; two different approaches have evolved for the same functionality, either to turn the light source or a projector, called dynamic bending and the second approach is to provide a secondary lamp at the corner focusing location for fulfilling the purpose. The present systems rely on the steering wheel sensor and the vehicle speed data for control. This requires the system to have a CAN transceiver module adding to the cost. In this paper, we will be focusing on static bending lamp in which the fixed-focus positioned lamp will be used for lighting the required area, moreover this gives design a more robustness and cost beneficial control system for the static bending lamp.
Technical Paper

Fuel Economy Measurement in Small Commercial Vehicles with Sub 1L BS6 Diesel Engines an Innovative Approach to Accurately Measure Fuel Economy

2022-03-29
2022-01-0575
In developing countries, the commercial vehicle industry is one of the key drivers for economic growth. The commercial vehicle industry in India is expected to reach 11,80,000 units by 2025 with a CAGR of 18% from CY 2020 to CY 2025 [1]. In the price sensitive segment of small commercial vehicles, it is imperative to incorporate accurate fuel economy measurement techniques during product development stage to deliver maximum value to the customer. In this approach, measuring the fuel consumption of small commercial vehicles in real world driving conditions in real time is one of the most critical aspects in engine calibration development and fine tuning. One of the challenges in measuring fuel consumption in sub 1 liter diesel engines is the very low fuel flow rate in the fuel feed line which keeps varying as per the driver demand.
Technical Paper

Pressure Drop Characteristics of Perforated Pipes with Particular Application to the Concentric Tube Resonator

2015-06-15
2015-01-2309
The bias flow in Concentric Tube Resonator (CTR) is a flow-induced phenomenon in which the pressure gradient along the radial direction is produced by the kinetic energy of the flow. As a result, the flow dynamics in CTR is characterized by bias flow into the annular cavity in the upstream and outflow from the annular cavity in the downstream of the flow. This is due to the change in direction of the radial component of the bias flow at a point called the point of recovery, as a consequence of mass conservation. The pressure drop of CTR is a complex function of the momentum flux and other geometric parameters such as porosity, open area ratio, discharge coefficient of the perforated holes, bias inflow, bias outflow, grazing flow and length. In this study, numerical experiments are conducted to obtain an empirical formula for the friction factor of perforated pipes which are extensively used in automotive mufflers.
Technical Paper

Prediction of Engine Thermal Behavior during Emission Cycle Using 1D Four Point Mass Model

2016-04-05
2016-01-0197
The traditional approach of engine thermal behavior of engine during startup has largely been dependent on experimental studies and high fidelity simulations like CFD. However, these techniques require considerable effort, cost and time. The low fidelity simulations validated with experimental results are becoming more popular due to their ease in handling the several parameters such as cost effectiveness and quick predictive results. A four point mass model of engine thermal behavior during cold start has been developed to study the engine warm up temperature behavior. The four point mass model considers the lumped mass of coolant, mass of engine directly associated with the coolant, mass of engine oil and mass of engine directly associated with the engine oil. The advantage of four point model is to predict the coolant temperature as well as lubricant temperature during the transient warm up cycle of the engine.
Technical Paper

1D Transient Thermal Model of an Automotive Electric Engine Cooling Fan Motor

2016-04-05
2016-01-0214
For the thermal management of an automobile, the induced airflow becomes necessary to enable the sufficient heat transfer with ambient. In this way, the components work within the designed temperature limit. It is the engine-cooling fan that enables the induced airflow. There are two types of engine-cooling fan, one that is driven by engine itself and the other one is electrically driven. Due to ease in handling, reduced power consumption, improved emission condition, electrically operated fan is becoming increasingly popular compared to engine driven fan. The prime mover for electric engine cooling fan is DC motor. Malfunction of DC motor due to overheating will lead to engine over heat, Poor HVAC performance, overheating of other critical components in engine bay. Based upon the real world driving condition, 1D transient thermal model of engine cooling fan motor is developed. This transient model is able to predict the temperature of rotor and casing with and without holes.
Technical Paper

Integration and Packaging for Vehicle Electrification

2015-01-14
2015-26-0115
In current scenario importance of fuel efficient vehicles, lesser emissions & energy efficiency are the major considerations for any vehicle manufacturer. To meet these expectations vehicle manufacturer are exploring alternate powertrains to reduce emissions and produce better fuel efficient vehicles. For any vehicle manufacturer component cost, weight and package volume are the major driving factors for success. This is even true for latest upcoming hybrid and electric vehicles as well. To gain advantage and introduce products faster, OEMs are inclined to electrify their existing platforms to compete with other manufacturers. To convert existing vehicles into hybrid vehicles, all the major components like e machine, High voltage battery, power electronics etc. needs to be carefully packaged along with existing components in the same package space.
X