Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels

2021-09-15
2021-28-0122
Air conditioning systems are one of the significant auxiliary loads on the vehicle powertrain. In an Electric Vehicle (EV) where the available energy is limited, it becomes crucial to optimize the overall energy consumption of the auxiliary loads. The major power consuming components in an automotive HVAC system (Heating, Ventilation and Air Conditioning) are: Compressor, Cabin blower, Condenser cooling fan and the Control devices. Significant progress is already made in enhancing the energy efficiency of the above-mentioned power consuming components part of vehicle HVAC system. Alternate energy sources are being explored recently, to reduce the energy demand from vehicle. One such proposal is to harness the abundant solar energy available, through solar panels and consume this energy to supplement the power required for HVAC system components. Solar panels convert solar energy to electrical energy by the principle of the photovoltaic effect.
Technical Paper

Thermal Performance and Ambient Airside Pressure Drop Prediction for Automotive Charge Air Cooler Using 1-D Simulation

2021-09-15
2021-28-0135
The present work discusses the developed simulation model aimed to predict the heat rejection (HR) performance and external pressure drop characteristics of automotive charge air cooler (CAC). Heat rejection and airside pressure drop characteristics of CAC were predicted for the conditions of different charge air mass flow rates and different cooling air velocities. The lack of detailed research on CAC performance prediction has motivated the development of the proposed simulation model. The present 1-D simulation has been developed based on the signal library of AMESIM application tool. Input parameters for this simulation such as core size, tube pitch, tube height, number of tubes, fin density, louver angle, louver pitch, charge air mass flow rate, cooling air velocity, charge air inlet temperature, and ambient temperature. Heat rejection curve and airside pressure drop of CAC were the output of the present simulation.
Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Technical Paper

Improving the Clutch Design Robustness by Virtual Validation to Predict Clutch Energy Dissipation and Temperature in Clutch Housing

2021-09-22
2021-26-0329
During the vehicle launch (i.e. moving the vehicle from “0” speed), the clutch would be slowly engaged by the Driver or Transmission Control Unit (in Automatic Transmission/Automatic Manual Transmission vehicle) for smooth torque transfer between engine and transmission. The clutch is designed to transfer max engine torque with min heat generation. During the clutch engagement, the difference in flywheel and gearbox input shaft speed is called the clutch slipping phase which then leads to a huge amount of energy being dissipated in terms heat due to friction. As a result, clutch surface temperature increases consistently, when the surface temperature crosses the threshold limit, the clutch wears out quickly or burns spontaneously. Hence it is crucial to predict the energy dissipation and temperature variation in various components of clutch assembly through virtual simulation.
Technical Paper

Performance Modification of Three Cylinder Diesel Engine Ge-Rotor Oil Pump through Rotor and PRV System

2017-07-10
2017-28-1934
Current high rating thermal loaded engines must have super-efficient lubrication system to provide clean oil at appropriate pressure and appropriate lube oil temperature to every part of the engine at all engine RPM speeds and loads. So oil pump not only have to satisfy above parameters but also it should be durable till engine life. Gerotor pumps are internal rotary positive-displacement pumps in which the outer rotor has one tooth more than the inner rotor. The gear profiles have a cycloidal shape. Both are meshed in conjugate to each other. Gerotor takes up engine power through crankshaft and deliver to various engine consumers at required pressure and required time. Over the complete engine rpm speed and loads range, oil pump need to perform efficiently to provide proper functioning of the engine. Otherwise low oil pressure leads to more friction in the pump, seizure of bearings and final failure of the engine .High oil pressure can lead to failure in oil filter, gaskets and seal.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

2017-01-10
2017-26-0051
Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
Technical Paper

A Parametric Approach of IP Duct Vane Articulation Study for Enhanced Cabin Cool Down Performance

2021-10-01
2021-28-0200
The cabin cool down performance is influenced by heat load, AC system components and Air handling components. The air handling components are AC duct, vane and vent. Design of AC duct vane plays a crucial role in the airflow directivity in cabin which enhances the cabin cool down performance. Simulations are carried out by rotating the vanes manually and requires post process for every iteration. It leads to more time consuming and more number of simulations to achieve the target value. Research articles focusing on automation and optimization of vane articulation studies are scanty. Thus, the objective of this work is to execute the vane articulation study with less manual intervention. A parametric approach is developed by integrating ANSA and ANSYS FLUENT tools. With Direct Fit Morphing and DoE study approach from ANSA delivers the surface mesh model for the different vane angle configurations.
Technical Paper

Design, Development and Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels

2021-10-01
2021-28-0234
Air conditioning systems are one of the significant auxiliary loads on the vehicle powertrain. In an Electric Vehicle (EV) where the available energy is limited, it becomes crucial to optimize the overall energy consumption of the auxiliary loads. The major power consuming components in an automotive HVAC system (Heating, Ventilation and Air Conditioning) are: Compressor, Cabin blower, Condenser cooling fan and the Control devices. Significant progress is already made in enhancing the energy efficiency of the above-mentioned power consuming components part of vehicle HVAC system. Alternate energy sources are being explored recently, to reduce the energy demand from vehicle. One such proposal is to harness the abundant solar energy available, through solar panels and consume this energy to supplement the power required for HVAC system components. Solar panels convert solar energy to electrical energy by the principle of the photovoltaic effect.
Technical Paper

Side Door Closing Velocity Reduction Parameters in a SUV

2023-04-11
2023-01-0606
Side Door closing velocity is one of the key customer touch points which depicts the build quality of the vehicle. Side door closing velocity results from the interaction of different parts like door and body seals, door check arm, door hinge, latch, and alignment of door hinge axis. In this paper, a high door closing velocity issue in a sports utility vehicle is discussed. Physical studies are carried out to understand each parameter in door closing velocity and its contribution is defined in terms of velocity. Many physical trials are conducted to conclude the contribution of each parameter. Studies revealed that the body and door seal are contributing around 70% of door closing velocity. Check arm and hinge axis deviation are contributing around 10% of the door closing velocity. Physical trials are conducted by reducing the compression distance of the body seal.
Technical Paper

Test Methodology for Objective Evaluation of Cornering Lamps on Automotive Passenger Vehicles

2017-01-10
2017-26-0325
With the advancement in vehicle technology over the years, many intuitive technologies are coming in automotive passenger vehicles to improve the safety aspects during vehicle driving in night conditions. In addition to headlamps, cornering lamps or infrared camera with head up display etc. are evolving as a part of AFS (Advanced Front Lighting Systems) to aid driver vision. Many OEMs are following conventional methodology of subjective assessments with the ratings on different numerical scale mapped with customer acceptance to validate head lamps and its tech updates. These methods lag in getting repeatability of results, acceptance reliability and not knowing the limitations of the installed system due to high dependency on the selected evaluators. This paper emphasizes on robust test methodology development to validate the complete performance of cornering lamps with the objective test data analysis.
Technical Paper

Effect of Gear Shift Indicator Technique Enhancing Improved Fuel Economy on SUV

2018-07-09
2018-28-0054
Improving the fuel economy of the vehicle resulting in energy conservation on long run is a challenging task in the automotive field without compromising the emission margins. Fuel economy improvement by effective driving is the main focus of this paper by the proper utilization of gears which can enable good fuel economy even when the vehicle is driven by different drivers. GSI technique was implemented on Sports utility vehicle operating with 2.2 l engine. Tests were carried with GSI and the effect of fuel consumption and emissions were compared to the regular driving cycle. Optimization of various gear shifting points were analyzed and implemented for better fuel economy keeping the drivability in mind, meeting the BS4 emission norms comfortably. The experiments were carried out in both cold and hot conditions to check the effect of GSI and positive results of fuel economy improvement was yielded.
Technical Paper

Cost and Weight Efficient Differential Housing for Off-Road Vehicles

2016-02-01
2016-28-0133
Differential in Gear Box play vital role in Tractors for assisting it in turning and also to take straight path. Light weight machine always have advantage in terms of fuel economy and performance. Weight optimized rotating part have additional benefits of saving power loss, against stationary dead weight. Differential Housing is such a part, which rotates during the vehicle motion and torque transmission. [1] This paper describes a method by which weight of the Differential Housing is optimized. In this particular body of work, additional constraints of avoiding any change in existing cold forged parts like Bevel Gear & Pinion. This also have additional benefit of enhanced flow of Oil inside Differential Housing for better lubrication of Bevel Gears and Pinion. This resulted in weight saving of Differential Housing and finally fuel economy of Tractor.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0026
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
Technical Paper

Customized ROPS Application for Configurable Design at Concept Level

2020-09-25
2020-28-0474
Tractor roll over is the most common farm-related cause of fatalities nowadays. ROPS (Roll-Overprotective Structures) are needed to prevent serious injury and death. It creates a protective zone around the operator when a rollover occurs. In India the ROPS is getting mandatory across all HP ranges except narrow track. In the present study states the customized ROPS application for configurable design such as Automated safety zone for all homologation standards, ROPS A0-D excel calculator for selection of material at concept stage and bolt calculator for selection of size. For the above applications below aspects need to consider such as Tractor weight, Rear housing mounting, Operator seat index position (SIP), Seat reference points (SRP) and all ROPS homologation standards. This ROPS application is to reduce the timeline, manual error and ensure the reliability of the modular optimal design for various platforms and variants.
Technical Paper

Optimization of IP Duct Vane Articulation for Improved Cabin Airflow Directivity

2019-10-11
2019-28-0132
The air velocity achieved at driver and passenger aim point is one of the key parameters to evaluate the automotive air-conditioning system performance. The design of duct, vent and vanes has a major contribution in the cabin air flow directivity. However, visual appearance of vent and vane receives higher priority in design because of market demand than their performance. More iterations are carried out to finalize the HVAC duct assembly until the target velocity is achieved. The objective of this study is to develop an automated process for vane articulation study along with predicting the optimized velocity at driver and passengers. The automated simulation of vane articulation study is carried out using STAR-CCM+ and SHERPA optimization algorithm which is available in HEEDS tool. The minimum and maximum vane angle are defined as parameters and face level velocity is defined as response.
Technical Paper

Parametric Calculation and Significance of Engine Dynamic Torque in Performance Benchmarking of a Vehicle

2019-10-11
2019-28-0028
The automotive industries around the world is undergoing massive transformation towards identifying technological capabilities to improve vehicle performance. In this regard, the engine dynamic torque plays a crucial role in defining the transient performance and drivability of a vehicle. Moreover, the dynamic torque is used as a visualization parameter in performance prediction of a vehicle to set the right engineering targets and to assess the engine potential. Hence, an accurate measurement and prediction of the engine dynamic torque is required. However, there are very few methodologies available to measure the engine dynamic torque with reasonable accuracy and minimum efforts. The measurement of engine brake torque using a torque transducer is one of the potential methods. However, it requires a lot of effort and time to instrument the vehicle. It is also possible to back-calculate the engine torque based on fuel injection quantity and other known engine parameters.
Technical Paper

Implementation and Experimentation of Effective Clog Removal Method in Tractors for Enhanced Condenser Life and Air Conditioning Performance During Reaper Application

2019-10-11
2019-28-0015
Tractors in the field are exposed to adverse operating conditions and are surrounded by dust and dirt. The tiny, thin and sharp broken straw and husks surround the system in reaper operation. The tractors which are equipped with air conditioning system tend to show detrimental effects in cooling performance. The compressor trips frequently by excess pressure developed in the system due to condenser clogging and hence cooling performance is reduced considerably. The air conditioning performance reduces due to the clogged condenser located on the top roof compartment of operator’s cabin, which is better design than keeping in front of radiator where clogging happens every hour and customer need to stop the tractor to clean it with specific blower.
Technical Paper

Digital Automotive AC Pulldown Prediction in a Real Driving Condition

2019-12-30
2019-01-5090
Automotive Original Equipment Manufacturers (OEMs) are always striving to deliver fast Air-Conditioning (AC) pulldown performance with consistent distribution of cabin temperature to meet customer expectations. The ultimate test is the OEM standard, called “AC Pull Down,” conducted at high ambient temperature and solar load conditions with a prescribed vehicle drive cycle. To determine whether the AC system in the vehicle has the capacity to cool the cabin, throughout the drive cycle test, cabin temperature measurements are evaluated against the vehicle target. If the measured cabin temperatures are equal or lower than the required temperatures, the AC system is deemed conventional for customer usage. In this paper, numerical predictions of the cabin temperatures to replicate the AC pulldown test are presented. The AC pulldown scenario is carried out in a digital Climatic Wind Tunnel simulation. The solution used in this study is based on a coupled approach.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0028
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
X