Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels

2021-09-15
2021-28-0122
Air conditioning systems are one of the significant auxiliary loads on the vehicle powertrain. In an Electric Vehicle (EV) where the available energy is limited, it becomes crucial to optimize the overall energy consumption of the auxiliary loads. The major power consuming components in an automotive HVAC system (Heating, Ventilation and Air Conditioning) are: Compressor, Cabin blower, Condenser cooling fan and the Control devices. Significant progress is already made in enhancing the energy efficiency of the above-mentioned power consuming components part of vehicle HVAC system. Alternate energy sources are being explored recently, to reduce the energy demand from vehicle. One such proposal is to harness the abundant solar energy available, through solar panels and consume this energy to supplement the power required for HVAC system components. Solar panels convert solar energy to electrical energy by the principle of the photovoltaic effect.
Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

A Study on Significance of Forward Speed of Tractor and Peripheral Speed of Rotavator for Optimal Field Performance

2021-09-22
2021-26-0099
The trace of rotavator blade is trochoidal path which depends both on tractor forward speed and rotational speed of rotavator. Since this path plays an important role in pulverization, hence pulverization also depends on both factors. In present days system, Rotavator an active tillage implements drawn by tractor is operated by drivers experience and driver set up the speed by throttling the tractor to reach the rated 540 PTO rpm mark in instrumentation cluster. Thus, there is no indication system available to farmer/ Tractor driver to operate the tractor connected rotavator at optimal forward tractor speed and rotational speed of rotavator. Thus, leading to decrease in field quality and performance.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Benefits of Electronic Assisted Variable Geometry Turbocharging on Sports Utility Vehicle

2020-09-25
2020-28-0328
Turbocharging of diesel engines have undergone various phases of technological advancements proving merits with engine performance. Since VGTs are finding their applications in many automotive engines, it is also crucial on finding out ways to extract maximum benefits from the system. Pneumatic actuated VGTs control the vanes positioning with the help of mechanical linkages and don’t prove good in transient response with relatively slower boost build up. The electronic controlled VGT operates with the aid of DC motor which is linked to the engine management system. The position sensor senses the current position of the actuator which is controlled by the engine management system for delivering the desired boost pressure. The eVGT system thus provides very quick response and accurate control of boost pressure in all the vehicle driving conditions.
Technical Paper

An Optimal Method for Prediction of Engine Operating Points for an Effective Correlation in Fuel Economy Benchmarking

2020-09-25
2020-28-0346
It is imperative that all automobile manufacturers conduct vehicle level benchmarking at the initial stage of any new project. From the benchmark information, the manufacturers can set relevant targets for their own vehicles under development. In this regard, an accurate prediction of the engine operating points can improve the correlation of the measured fuel economy of the benchmark vehicle. The present work describes a novel method that can be used for the accurate prediction of the engine operating points of any benchmark vehicle. Since the idea of instrumenting the crankshaft/driveshaft with torque transducers is a costlier and time-consuming process, the proposed method can be effective in reducing the benchmarking. Hence, the objective of this work is to develop a mathematical model to calculate the real-time engine operating points (engine speed and torque) using parameters like vehicle speed, accelerator pedal map, driveline inertia, vehicle coastdown force and gradient.
Technical Paper

A CFD Simulation Approach for Optimizing Front Air-Dam to Improve Aerodynamic Drag of a Vehicle

2020-09-25
2020-28-0361
The front air-dam diverts the airflow flowing through the underbody, thereby reducing aerodynamic drag. The height, shape and position of air-dam must be optimized to get improved drag. Extensive iterations are carried out to finalize the front air-dam size and position until the target is achieved. Researchers used to study the effect of air-dam height, then with fixed height will work to finalize position. Studies with interactive effect of front air-dam height and position are scanty. The existing process is time consuming as the front air-dam size and position is adjusted manually and simulation is being performed for each design and requires detailed analysis for all design iterations. The objective of this study is to couple CFD solver with design optimization software to reduce overall manual design iterations to choose the effective front air-dam geometry.
Technical Paper

Case Study: An Accelerated Methodology for Simulating Thermal Stress in Automotive Headlamps

2017-01-10
2017-26-0322
In any industry, early detection and mitigation of a failure in component is vital for feasible design changes or development iterations or saving money. So it becomes pivotal to capture the failure mode in an accelerated way. This theory poses many challenges in devising the methodology to validate the failure mode. In real world, vehicle head lamp is exposed to all possible kinds of harsh environments such as variable daily ambient, rain, dust and engine compartment temperature …etc. This brings rapid thermal stress onto headlamp resulting into warpage cracks. At vehicle level on particular model, this failure is typically observed after 20,000-25,000 kms in a span of 3-4 months of running. Any corrective action to revalidate the design change or improvement will need similar timelines in regular way to test, which is quite high in product development cycle.
Technical Paper

Performance Modification of Three Cylinder Diesel Engine Ge-Rotor Oil Pump through Rotor and PRV System

2017-07-10
2017-28-1934
Current high rating thermal loaded engines must have super-efficient lubrication system to provide clean oil at appropriate pressure and appropriate lube oil temperature to every part of the engine at all engine RPM speeds and loads. So oil pump not only have to satisfy above parameters but also it should be durable till engine life. Gerotor pumps are internal rotary positive-displacement pumps in which the outer rotor has one tooth more than the inner rotor. The gear profiles have a cycloidal shape. Both are meshed in conjugate to each other. Gerotor takes up engine power through crankshaft and deliver to various engine consumers at required pressure and required time. Over the complete engine rpm speed and loads range, oil pump need to perform efficiently to provide proper functioning of the engine. Otherwise low oil pressure leads to more friction in the pump, seizure of bearings and final failure of the engine .High oil pressure can lead to failure in oil filter, gaskets and seal.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

2017-01-10
2017-26-0051
Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
Technical Paper

A Parametric Approach of IP Duct Vane Articulation Study for Enhanced Cabin Cool Down Performance

2021-10-01
2021-28-0200
The cabin cool down performance is influenced by heat load, AC system components and Air handling components. The air handling components are AC duct, vane and vent. Design of AC duct vane plays a crucial role in the airflow directivity in cabin which enhances the cabin cool down performance. Simulations are carried out by rotating the vanes manually and requires post process for every iteration. It leads to more time consuming and more number of simulations to achieve the target value. Research articles focusing on automation and optimization of vane articulation studies are scanty. Thus, the objective of this work is to execute the vane articulation study with less manual intervention. A parametric approach is developed by integrating ANSA and ANSYS FLUENT tools. With Direct Fit Morphing and DoE study approach from ANSA delivers the surface mesh model for the different vane angle configurations.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Design, Development and Experimental Investigation on the Effect of HVAC Power Consumption in Electric Vehicle Integrated with Thin Film Solar PV Panels

2021-10-01
2021-28-0234
Air conditioning systems are one of the significant auxiliary loads on the vehicle powertrain. In an Electric Vehicle (EV) where the available energy is limited, it becomes crucial to optimize the overall energy consumption of the auxiliary loads. The major power consuming components in an automotive HVAC system (Heating, Ventilation and Air Conditioning) are: Compressor, Cabin blower, Condenser cooling fan and the Control devices. Significant progress is already made in enhancing the energy efficiency of the above-mentioned power consuming components part of vehicle HVAC system. Alternate energy sources are being explored recently, to reduce the energy demand from vehicle. One such proposal is to harness the abundant solar energy available, through solar panels and consume this energy to supplement the power required for HVAC system components. Solar panels convert solar energy to electrical energy by the principle of the photovoltaic effect.
Technical Paper

Holistic Design Approach of Rocker Arm in Aluminum, Sheet Metal & Plastic Materials for Heavy Duty Commercial Application

2023-04-11
2023-01-0440
Diesel engines are known for their excellent low-end torque, better drivability, performance, and better fuel economy. The increase in customer demands pushes to deliver higher power and torque along with fuel economy. This requirement puts a great challenge on the overall weight of the engine. This paper explains the holistic approach followed along with optimizing the rocker arm cover to achieve the weight target without compromising on durability and cost in the commercial segment 2.5-liter Diesel Engine. This paper presents a complete overview of the design and development of Rocker Arm (RA) cover to meet Strength, Durability, NVH and Aesthetic in Commercial Engine where base design is in aluminum which is mounted on cylinder head with a separate breather system. From aluminum the base design of Rocker arm cover is optimized to sheet metal where in there is reduction of 43% in weight and cost saving of 13%.
Technical Paper

Side Door Closing Velocity Reduction Parameters in a SUV

2023-04-11
2023-01-0606
Side Door closing velocity is one of the key customer touch points which depicts the build quality of the vehicle. Side door closing velocity results from the interaction of different parts like door and body seals, door check arm, door hinge, latch, and alignment of door hinge axis. In this paper, a high door closing velocity issue in a sports utility vehicle is discussed. Physical studies are carried out to understand each parameter in door closing velocity and its contribution is defined in terms of velocity. Many physical trials are conducted to conclude the contribution of each parameter. Studies revealed that the body and door seal are contributing around 70% of door closing velocity. Check arm and hinge axis deviation are contributing around 10% of the door closing velocity. Physical trials are conducted by reducing the compression distance of the body seal.
Technical Paper

Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

2023-04-11
2023-01-0598
Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model.
Technical Paper

Side Door Hinge Axis Deviation and Skewness Study on the Door Closing Effort

2023-04-11
2023-01-0610
The side door closing effort is one of the main evaluating parameters which demonstrates the build quality of the vehicle. The side door hinge axis inclination is one of the key attributes that affect the side door closing effort. Commonly, the hinge axis is inclined in two directions of a vehicle to have necessary door rise during the door opening event. Due to the process and assembly variations in the door assembly, the upper and lower hinge axis of the side door deviates from the design axis. In this paper, the deviations in the side door hinge axis and its effects on the side door closing velocity is discussed. The deviations of the side door hinge axis are studied with a coordinate measuring machine. The side door closing velocity of the vehicle is measured with the velocity meter. The study revealed that side door closing velocity is increasing with an increase in the deviation of the top and bottom door hinge axis from the design hinge axis.
Technical Paper

Reduction of Diesel Engine Combustion Noise through Various Injection Strategies

2019-01-09
2019-26-0211
The contribution of engine borne noise is the major source of vehicle noise in diesel powered vehicles. The engine noise can be minimized by modification of engine components design and also with different acoustic abatement techniques. The research activities were carried out on 4-cylinder CRDe engine for SUV application. All the emission and performance parameters along with combustion noise was captured continuously for all the part load points from 1000 RPM to 2750 RPM with respect to the different road conditions and driving cycle. This paper targets on reducing the combustion noise at the noise prone zones only on the basis of the injection strategies ensuring no ill effect on the emissions and fuel economy. The first step was the reduction of rail pressure which helped noise levels to be reduced by almost 6 dB at noise zones. Main injection timing retardation was tried at all possible zones which influenced in considerable noise reduction at various zones.
X