Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Application of Electromagnets in Windshield Wipers

2021-09-22
2021-26-0510
The most widely used type of windshield wiper system employs a coil spring for wiper arm pressure generation. This spring is fixed between the arm head (fixed part) and wiper arm (moving part) and the tension in the spring is responsible for pressure generation. The present arrangement although being unsophisticated design, has following drawbacks: Inability to change wiper arm pressure according to change in vehicle speed. Inability to provide constant arm pressure during the complete range of motion along varying curvature of windshield. Inability to reduce/remove the continuous pressure on wiper blade when vehicle is parked for long durations resulting in permanent deformation of wiper blade rubber. This paper describes how electromagnets can be used to overcome the above stated inherent limitations of the windshield wiper system. An electromagnet is a device which produces magnetic field on application of electric current.
Technical Paper

Improving Rough Road NVH by Hydraulic Mount Design Optimization

2020-04-14
2020-01-0422
Vehicle cabin comfort emphasizes a specific image of a brand and its product quality. Low frequency powertrain induced noise and vibration levels are a major contributor affecting comfort inside passenger cabin. Thus, using hydraulic mount is a natural choice. Introduction of lighter body panels coupled with cost effective hydraulic mounts has resulted in some additional noises on rough road surfaces which are challenging to identify during design phase. This paper presents a novel approach to identify two such noises i.e. Cavitation noise and Mount membrane hitting noise based on component level testing which are validated at vehicle experimentally. These noises are encountered at 20~30kmph on undulated road surfaces. Sound quality aspect of such noises is also studied to evaluate the solution effectiveness.
Technical Paper

A Methodology to Enhance the Directional Load Bearing Performance of Cowl Cover and Its Effect on Pedestrian Head Impact

2020-04-14
2020-01-0911
In the modern automobile scenario in developing countries, customers are getting more meticulous and market more competitive. Now even the budget vehicle customer expects desirable vehicle performance in specific use cases of the vehicle that were previously not focused by designers. Hence, the focus on perceived quality challenges automobile engineers to go the extra mile when it comes to the cost-effective design of parts that are tangible to the customer. A vehicle's cowl cover is one such exterior component. The primary functions of this part are to provide air intake opening for the HVAC system and cover the components like wiper motor. The aesthetic function is to cover the gaps between windshield, hood, and fender as seamlessly as possible. A specific role of cowl cover, which calls for a designer's attention, is its load-bearing capability.
Technical Paper

Characterization of Structure-Borne Road/Tire Noise Inside a Passenger Car Cabin Using Path Based Analysis

2013-11-27
2013-01-2858
Road/Tire noise is an important product quality criterion for passenger cars which are driving customers to decide upon the selection of a vehicle. Reduced engine noise and improvement in road conditions has resulted into more road/tire noise problem as average vehicle speed has gone up. Excitations from road surface travelling through the tire/suspension to vehicle body (structure-borne path) and air-pumping noise caused by tread patterns (air-borne paths) are the main contributor to tire noise issue inside the vehicle cabin [1]. A lot of emphasis is put on the component level design as well as its compliance with vehicle structure to reduce the cabin noise. The objective of this work is to establish a methodology for evaluating structure-borne road/tire noise by evaluating the tire structural behavior and its interface with the vehicle body and its suspension system and identifying the contributing critical paths.
Technical Paper

Impact of Different Types of Glazing on Thermal Comfort of Vehicle Occupants

2020-04-14
2020-01-1249
Due to intense peak summer temperatures and sunny summers in tropical countries like India etc., achieving the required thermal comfort of car occupants without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is Solar Load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle air-conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as green, dark green, dark gray, standard PVB (Polyvinyl Butyral) windscreen and PVB windscreen having infrared cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and heat flux through each glass.
Technical Paper

Optimization of Simulation Channels for Inverse FRF Calculation on 6-Axis Road Load Simulator: An Experimental Approach

2017-01-10
2017-26-0303
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors [2]. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper experimental approach has been applied for the optimization of the simulation channels to be used for simulation of normal Indian passenger car on 4 corners, 6-Axis Road Load Simulator. Time domain tests were performed to identify potential simulation channels.
Technical Paper

Development of Real Time Mild Hybrid Simulation Model using Battery in Loop

2016-02-01
2016-28-0031
Battery modeling is of major concern going forward for Hybrid Electric Vehicle (HEV) and Electric vehicle (EV) modeling. The major issue lies in characterizing the battery power, Charge acceptance and reaction to sudden load changes (transient behavior) in relation to battery’s State of Charge (SOC). In particular modeling the battery is challenging task as it requires a lot of test data to understand and validate modeled chemical and electrical characteristics in various operating conditions. Hence, the one of the ways of simulating Battery based Hybrid System is to use battery Hardware-in-the-Loop Simulation (HILS) or simply known as Battery-in-Loop (BIL). With this approach hybrid vehicle or more precisely battery management system (BMS) development time and cost can be significantly reduced by eliminating the detailed battery modeling. To understand the effectiveness of this approach, Battery Hardware-in-Loop test setup was developed.
Technical Paper

Study of Parameters Affecting the Impact Performance of an Alloy Wheel and Noble Approach Followed to Improve the Impact Performance

2015-04-14
2015-01-1514
A typical wheel development process involves designing a wheel based on a defined set of criteria and parameters followed by verification on CAE. The virtual testing is followed by bench level and vehicle level testing post which the design is finalized for the wheel. This paper aims to establish the learning which was accomplished for one such development process. The entire wheel development process had to be analyzed from scratch to arrive at a countermeasure for the problem. This paper will not only establish the detailed analysis employed to determine the countermeasure but also highlight its significance for the future development proposals. The paper first establishes the failure which is followed by the detailed analysis to determine the type of failure, impact levels and the basic underlying conditions. This leads to a systematic approach of verification which encompasses the manufacturing process as well as the test methodology.
Technical Paper

Evaluating Effects of Roll Stiffness Change at Front and Rear Axles on Vehicle Maneuverability and Stability

2019-11-21
2019-28-2406
To cater the push towards “Vehicle Light Weighting”, both sprung and unsprung mass are being reduced. This results in reduced stiffness and thus has a profound undesirable effect on the overall vehicle handling. To understand the effect of different reduction ratios of sprung to unsprung mass; it is desired to understand how changes in stiffness affect the overall vehicle handling characteristics. Therefore, the study was conducted to experiment with different values of roll stiffness, at both front and rear axles and comparing the frequency response and phase change of Yaw Gain observed through a Pulse Input test. The present work is further correlated with subjective feedback to predict the shift in vehicle balance and handling characteristics.
Technical Paper

Simulation Technique for Optimizing AC System Sizing & Cabin Cooling Performance for Customer Comfort

2023-09-14
2023-28-0011
The automotive sector is evolving both globally and as well as in India. The Indian customer’s expectations from an automobile are also evolving at fast pace. This is resulting in a continuous shrinkage of the time available for vehicle development. To meet customers’ expectation of superior cabin thermal comfort it is important to predict cabin cooling performance at early stage. This can be achieved through thermal simulation. Existing studies of cabin thermal simulation explained the method of co-simulation. Wherein, Input for the cabin was used a grill air temperature which was obtained from the physical test. It showed good correlation for the cabin inside air temperature with actual test. However, cabin cooling performance does not only depend on cabin structure & layout but also, affected by AC system & its component level performance. AC systems and components were not considered in previous studies.
Technical Paper

An Experimental Approach Towards Sustainable Solution for Material Recycling of ELV Plastic Bumpers and EV Batteries

2024-01-16
2024-26-0164
A general automotive car is majorly composed of high strength steel (6%), other steel (50%), Iron (15%), Plastics (7%), Aluminum (4%) and others (Rubber, Glass, Textile) about 18%. End-of-life vehicles (ELVs) are a significant source of waste and pollution in the automotive industry. Recycling ELVs, particularly their plastic components, Li-ion batteries, catalytic converters, and critical technology components such as alternators, semi-conductor chips, and high tensile strength steel can reduce their environmental impact and conserve valuable raw materials. The paper conducts a SWOT analysis and a life cycle assessment (LCA) to evaluate the long-term viability and potential of ELV recycling, environmental impact, and carbon footprint.
X