Refine Your Search

Topic

Author

Search Results

Journal Article

Improving STL Performance of Automotive Carpets with Multi-layering and Effective Decoupling

2015-01-14
2015-26-0136
Automotive floor carpet serves the purpose of insulating airborne noises like road-tire noise, transmission noise, fuel pump noise etc. Most commonly used automotive floor carpet structure is- molded sound barrier (PE, vinyl etc.) decoupled from the floor pan with an absorber such as felt. With increasing customer expectations and fuel efficiency requirements, the NVH requirements are increasing as well. The only possible way of increasing acoustic performance (Specifically, Sound Transmission Loss, STL) in the mentioned carpet structure is to increase the barrier material. This solution, however, comes at a great weight penalty. Theoretically, increasing the number of decoupled barrier layers greatly enhances the STL performance of an acoustic packaging for same weight. In practice, however, this solution presents problems like- ineffectiveness at lower frequencies, sudden dip in performance at modal frequencies.
Technical Paper

Implementation of Atkinson Effect for Improved Fuel Efficiency of Gasoline Engine Using 1-D Simulation Software and its Validation with Experimental Data

2021-09-22
2021-26-0053
In order to meet the challenges of future CAFE regulations & pollutant emission, vehicle fuel efficiency must be improved upon without compromising vehicle performance. Optimization of engine breathing & its impact on vehicle level fuel economy, performance needs balance between conflicting requirements of vehicle Fuel Economy, performance & drivability. In this study a Port Fuel Injection, naturally aspirated small passenger car gasoline engine was selected which was being used in a typical small passenger car. Simulation approach was used to investigate vehicle fuel economy and performance, where-in 1D CFD Engine model was used to investigate and optimize Valve train events (Intake and exhaust valve open and close timings) for best fuel economy. Engine Simulation software is physics based and uses a phenomenological approach 0-D turbulent combustion model to calculate engine performance parameters. Engine simulation model was calibrated within 95% accuracy of test data.
Technical Paper

Variation in Automotive Shock Absorber Damping Characteristics & Their Effects on Ride Comfort Attribute and Vehicle Yaw Response

2021-09-22
2021-26-0081
In a Passive suspension, a shock absorber generates damping force by pressurizing the oil flow between chambers. Typically, vehicle responds with suspension deflection, which significantly depends on damping forces and suspension velocity. Tuning dampers for various roads and steering input is an iterative balancing process. In any setting, damping force w.r.t velocity is tuned for optimum ride and handling performance. Practically, to achieve a balance between the two is a tedious task as the choices & arrangements of inner parts like piston, port, valve etc., which defines the forces set up [soft / hard] are almost infinite. The objective of this paper is to measure, objectify and evaluate the performance of two such optimum setting in various ride and handling events. A passenger car set up with an optimum soft & hard suspension damping force is studied for various ride and handling sub-attributes and their conflicts are examined in detail from a performance point of view:
Technical Paper

Application of Electromagnets in Windshield Wipers

2021-09-22
2021-26-0510
The most widely used type of windshield wiper system employs a coil spring for wiper arm pressure generation. This spring is fixed between the arm head (fixed part) and wiper arm (moving part) and the tension in the spring is responsible for pressure generation. The present arrangement although being unsophisticated design, has following drawbacks: Inability to change wiper arm pressure according to change in vehicle speed. Inability to provide constant arm pressure during the complete range of motion along varying curvature of windshield. Inability to reduce/remove the continuous pressure on wiper blade when vehicle is parked for long durations resulting in permanent deformation of wiper blade rubber. This paper describes how electromagnets can be used to overcome the above stated inherent limitations of the windshield wiper system. An electromagnet is a device which produces magnetic field on application of electric current.
Technical Paper

Virtual Validation of Gearbox Breather by CFD Simulation and Correlation with Testing

2021-09-22
2021-26-0321
Gearbox power transfer efficiency is a major factor in overall powertrain efficiency of a passenger vehicle. With rapidly changing emission and fuel efficiency regulations, there is a push to increase the gearbox efficiency to improve the overall fuel economy of the vehicle. In case of an existing gearbox, efficiency can be improved by using the low viscosity lubrication oil. Despite a benefit in increasing the gearbox efficiency, lowering down the viscosity of lubrication oil gives rise to few challenges with respect to its performance. One of these challenges is breather performance which defines that transmission oil should not come out of breather pipe in some pre-defined conditions during gearbox operation. As this validation is being carried out on proto parts when the complete system is ready, failure to satisfy the defined criteria for breather performance can lead to multiple trials.
Technical Paper

Integrated Exhaust Manifold Cylinder Head Design Methodology for RDE in Gasoline Engine Application

2020-04-14
2020-01-0169
In recent years, worldwide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFÉ) targets, as set by international regulatory authorities. Many technologies have been already developed, or are currently under study by automotive manufacturer for gasoline engines, to meet legislated targets. In-line with the above objective, there are many technologies available in the market to expand lambda 1 (λ=1) region by reducing fuel enrichment at high load-high revolutions per minute (RPM) by reducing exhaust gas temperature (for catalyst protection) for RDE regulation [1]. Integrated Exhaust Manifold (IEM) is the key technology for the Internal Combustion (IC) for the subjected matter as catalyst durability protection is done by reducing exhaust gas temperatures instead of injecting excess fuel for cooling catalyst.
Technical Paper

CFD Simulation of Transmission for Lubrication Oil Flow Validation and Churning Loss Reduction

2020-04-14
2020-01-1089
Rapidly changing emission and fuel efficiency regulations are pushing the design optimization boundaries further in the Indian car market which is already a very cost conscious. Fuel economy can be improved by reducing moving parts friction and weight optimization. Driveline or Transmission power losses are major factor in overall efficiency of rotating parts in a vehicle. Transmission efficiency can be improved by using low viscosity oil, reducing oil quantity and reducing churning losses in car transmission. Changes like low viscosity and reduced oil volume give rise to challenges like compromised lubrication and durability of rotating parts. This further leads to extended design cycles for launching new cars with better transmission efficiency and fuel economy into the market. Design cycle time can be reduced by using CFD simulation for oil flow validation in the early design stage.
Technical Paper

Road-Lab-Math (RLM) Strategy for Improving Vehicle Development Efficiency

2021-09-22
2021-26-0193
In today’s Indian automotive industry, vehicles are becoming more complex and require more efforts to develop. Also, new and upcoming regulations demand more trials under varied driving conditions to ensuring robustness of emission control. Combined with expectations of customer to get new products more frequently, requires solutions and methods that can allow more trials with required accuracy to ensure compliance to stricter regulation and delivery a quality product. This translates into more trials in less time during the development life cycle. Recently, to overcome above challenge, there has been focus on simulating the vehicles trials in engine bench environment. ‘Road to Lab to Math’ (RLM) is a methodology to reduce the effort of On-road testing and replace it with laboratory testing and mathematical models. Also, on-road testing of prototype vehicles is expensive as it requires physical parts.
Technical Paper

Dynamic Strength Co-Simulation for Valve Train Mechanism Design Virtual Validation

2020-04-14
2020-01-0949
As the automotive market is very dynamic and vehicle manufactures try to reduce the vehicle development cycle time, more focus is being given to CAE simulation technologies to reduce the design cycle time and number of physical tests. CAE engineers are continuously working on improving the accuracy of CAE simulation, such as using flexible body dynamic simulation in place of linear static analysis. Strength calculation under dynamic condition is more accurate as compared to static condition as it gives more clear understanding of stress variation with motion, contacts and mass inertia. Failure has been observed in new development of valve train pivot screw under test conditions. As per linear static analysis, design was judged OK. Normal linear static analysis is a two stage process. In first stage loads are calculated by hand or peak loads are taken from multibody dynamics (MBD) rigid body analysis.
Technical Paper

Fuel Efficient Algorithm for Climate Control in Next Generation Vehicles

2017-01-10
2017-26-0370
Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and, 2 Software change Hardware change leads to increase in cost, validation effort and time.
Technical Paper

Analysis of Thermal Balance of Diesel Engine and Identification of Scope for Waste Heat Recovery

2013-11-27
2013-01-2744
Diesel engines as prime movers for passenger cars are becoming popular, primarily due to their superior thermal efficiency. However, the peak thermal efficiency does not exceed 35 to 40% even in the best engines. Huge efforts are being put in to improve engine efficiencies to meet ever stringent fuel economy requirements. Such efforts are mainly focused on combustion improvement and parasitic losses reduction. However, a large part of the energy input to engine is lost to cooling system, exhaust gases and other heat losses. Such losses are higher at part and low loads which is where the engine operates in normal usage conditions. This paper analyses in detail the various energy losses at different engine operating regimes. Quantification of losses and understanding of loss mechanism serves as a starting point for future technologies to recover the lost energy. Quantification of losses: Losses in different systems are quantified at different engine operating regimes.
Technical Paper

Base Engine Value Engineering for Higher Fuel Efficiency and Enhanced Performance

2013-11-27
2013-01-2748
To sustain market leadership position one has to continuously improve their product and services so that on one hand customer expectations are met and on the other hand business profitability is maintained. Value engineering is one of the approach through which we can achieve these two objectives simultaneously. Enhancing the value of running products is always a challenge as there is limited scope and flexibility to modify the current design and processes. Value engineering approach, integrated in product development cycle, brings great opportunity to upgrade the new and running products. This study reveals approach to upgrade the base engine of Maruti Alto. Upgraded engine is used in Alto 800 vehicle launched in October 2012. Improvement points were studied based on the business requirement, market competition, and legislative requirements. Based on functional improvement points, all the design parameters were studied and finalized.
Technical Paper

Characterization of Structure-Borne Road/Tire Noise Inside a Passenger Car Cabin Using Path Based Analysis

2013-11-27
2013-01-2858
Road/Tire noise is an important product quality criterion for passenger cars which are driving customers to decide upon the selection of a vehicle. Reduced engine noise and improvement in road conditions has resulted into more road/tire noise problem as average vehicle speed has gone up. Excitations from road surface travelling through the tire/suspension to vehicle body (structure-borne path) and air-pumping noise caused by tread patterns (air-borne paths) are the main contributor to tire noise issue inside the vehicle cabin [1]. A lot of emphasis is put on the component level design as well as its compliance with vehicle structure to reduce the cabin noise. The objective of this work is to establish a methodology for evaluating structure-borne road/tire noise by evaluating the tire structural behavior and its interface with the vehicle body and its suspension system and identifying the contributing critical paths.
Technical Paper

Innovative Simulation Approach to Analyze and Add Value to Upcoming Complex Drive Cycle (WLTC) for Passenger Cars

2013-11-27
2013-01-2801
Vehicles which are sold and put into service in a country have to meet the regulations and standards of that country. Every country has a separate regulation and approval procedure which requires expensive design modifications, additional tests and duplicating approvals. Thus, there is the need to harmonize the different national technical requirements for vehicles and form a unique international regulation. With this rationale, the World Forum for Harmonization of Vehicle Regulations of the United Nations Economic Commission for Europe (UN/ECE/WP29) has brought governments and automobile manufacturers together to work on a new harmonized test cycle and procedure which is to be adopted around the world. This lead to the development of Worldwide Harmonized Light Duty Test Procedures (WLTP) and Cycles (WLTC). The test procedure is divided into 3 cycles, depending on a power to mass ratio of the tested vehicle.
Technical Paper

Valve-Train Dynamics Calculation, Model Simulation and Actual Testing for Friction Reduction to Improve FE

2022-10-05
2022-28-0074
Valve train system is one major contributor to engine overall friction loss and is approximately 30% of total engine friction at lower speed and approximately 20 % at higher engine speed. Valve spring loads (preload and working) are proportional to friction loss of valve train. To optimizing the valve spring design main requirement is valve train perform it function safely at maximum engine cutoff RPM with minimum preload and working load. Robustness and frictional power loss are contradicting requirement, robustness demand high stiffness spring for better valve jump and bounce performance with dynamic safe valve spring design, on the other hand low frictional power loss demand for use of low stiffness spring. To optimize the valve spring stiffness for meeting both the requirement we need accurate prediction of valve spring in design stage and good correlation with testing data to reduce the number of iterations.
Technical Paper

Mitigation of Abnormal Injector Ticking Noise by Optimization of Hydraulic Operational Modes of Fuel System

2022-10-05
2022-28-0096
With the advent of stricter regulation for tail pipe emission and urge to reduce the carbon foot prints, the engine hardware has undergone through evolutionary changes over the years i.e., boosting, low viscosity engine oil, high pressure fuel injection, cooled EGR, friction reduction, downsizing etc. These technological changes have led to the challenge of increase in radiated noise level from the engine (source) due to increased number of auxiliary drives on engine i.e., Turbo charger, HP fuel pump along with faster combustion & harsher operating conditions. The fuel system is one such system which has become most intricate with operating pressure going above 2000bar in the fuel rail and capability of up to 10 fuel injection per combustion. These changes in hardware could result in abnormal noise generation during specific operating conditions which may result in customer annoyance inside vehicle cabin.
Technical Paper

Methodology to Decide Overall Drive Performance Index of Passenger Vehicles

2022-10-05
2022-28-0100
Fun to drive, pick-up of vehicle, high acceleration feeling of vehicle, time to reach max velocities are some parameters prevailing in the passenger vehicle market. In addition to focusing on information about fuel economy declared by manufacturer, the customer also has drivability related criteria in his mind. Although drivability is subjective, it can be judged by using various parameters like maximum speed, pick-up feeling, overtaking acceleration, time to reach 0 – 100 km/h or 0 – 60 km/h, etc. While comparing two vehicles of the same segment, one vehicle may perform better on some of the parameters while losses on others. To decide overall drive performance of a vehicle based on various measured performance related parameters, a methodology is defined. This will help to understand the overall performance of a vehicle holistically and to compare its performance with other vehicles in a better way.
Technical Paper

Study of Electronic Thermostat on Performance & Fuel Economy of Naturally Aspirated Gasoline Engine

2022-10-05
2022-28-0018
In view of global concern for greenhouse gas emissions, need for greener and efficient Engines is increasing. Hence is it imperative that Internal Combustion Engines are improved in terms of efficiency to reduce Greenhouse gas emissions and meet CAFE targets. The cooling system of an ICE plays a major role in a vehicle performance. In this system, the radiator, thermostat, and cooling fan are the main components. Conventional cooling system uses Wax-type thermostat which is activated at specified coolant temperature and maintain same coolant temperature in fully warmed up condition at all engine operating points. Operative temperature selection in Wax-type is trade-off between engine friction & thermal efficiency at lower loads & knocking at higher loads. An electronic thermostat is a good alternative to maintain optimum temperature as per operating point requirement since optimum temperature at different operating points can be different.
Technical Paper

Impact of Different Types of Glazing on Thermal Comfort of Vehicle Occupants

2020-04-14
2020-01-1249
Due to intense peak summer temperatures and sunny summers in tropical countries like India etc., achieving the required thermal comfort of car occupants without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is Solar Load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle air-conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as green, dark green, dark gray, standard PVB (Polyvinyl Butyral) windscreen and PVB windscreen having infrared cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and heat flux through each glass.
Technical Paper

Optimization of Simulation Channels for Inverse FRF Calculation on 6-Axis Road Load Simulator: An Experimental Approach

2017-01-10
2017-26-0303
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors [2]. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper experimental approach has been applied for the optimization of the simulation channels to be used for simulation of normal Indian passenger car on 4 corners, 6-Axis Road Load Simulator. Time domain tests were performed to identify potential simulation channels.
X