Refine Your Search

Topic

Search Results

Viewing 1 to 8 of 8
Technical Paper

Effect of PVC Skin and Its Properties on Automotive Door Trim Inserts

2017-03-28
2017-01-0492
Plastic plays a major role in automotive interiors. Till now most of the Indian automobile industries are using plastics mainly to cover the bare sheet metal panels and to reduce the weight of the vehicle along with safety concerns. Eventually Indian customer requirement is changing towards luxury vehicles. Premium look and luxury feel of the vehicle plays an equal role along with fuel economy and cost. Interior cabin is the place where aesthetics and comfort is the key to attract customers. Door Trims are one of the major areas of interiors where one can be able to provide premium feeling to the customer by giving PVC skin and decorative inserts. This paper deals with different types of PVC skins and its properties based on process constraints, complexity of the inserts. Door trim inserts can be manufactured by various methods like adhesive pasting, thermo-compression molding and low pressure injection molding process etc.
Technical Paper

Application and Development Challenges of Dynamic Damper in Cabin Booming Noise Elimination

2014-04-01
2014-01-0013
Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range.
Technical Paper

Dynamic Simulation of Clutch Actuation System with Flexible Cable

2015-01-14
2015-26-0180
Clutch actuation system in manual transmission is one of the key systems of power-train with which driver interacts frequently. Therefore its load and travel feeling are important to customer. Clutch actuation system consists of clutch pedal assembly, flexible cable mounted on body panel, and clutch release arm/ shaft assembly inside transmission unit assembly. Clutch pedal load, travel and engagement point are important parameters to specify the actuation feeling while designing the clutch actuation system. Validation of actual values is being done at proto vehicle testing stage, as final output calculation may not be accurate due to dependency on variables difficult to estimate. To overcome these difficulties a virtual dynamic model of the entire clutch actuation mechanism has been created in MBD software. Model input factors are based on actual testing results to improve the accuracy. The model predicts the clutch pedal load and travel values for a given set of vehicle inputs.
Technical Paper

Design Optimization of FEAD System to Meet Durability Target in a New Vehicle Development Program

2014-04-01
2014-01-1636
Front end accessory drive (FEAD) system explained in this paper is a sub-system of an engine. In FEAD system, a poly-v belt is used to drive the alternator and water pump by transmitting power from crankshaft pulley. In a new vehicle development program, durability targets of FEAD system are based on required life of poly-v belt, its static tension readjustment interval and replacement frequency. To meet these durability targets following methodology is applied in design stage:- 1 Simulation of FEAD system to calculate the theoretical life of belt 2 Part level testing of belt as per SAE J2432 These methods give sufficient information on belt durability. However in actual usage, certain failures are prone to happen and enormous difference is always observed between theoretical and actual life of belt. This paper describes the traditional stair-case approach followed to optimize the FEAD system based on the outcome of durability tests.
Technical Paper

Improving Side Crash Performance of a Compact Car via CAE

2014-04-01
2014-01-0546
The side impact accident is one of the very severe crash modes for the struck side occupants. According to NHTSA fatality reports, side impact accounts for over 25% of the fatalities in the US. Similar fatality estimates have been reported in the EU region. Side crash compliance of a compact car is more severe because of the less space available between the occupant and the vehicle structure, stringent fuel economy, weight and cost targets. The current work focuses on the development of Side body structure of a compact car through Computer Aided Tools (CAE), for meeting the Side crash requirements as per ECE R95 Regulation. A modified design philosophy has been adopted for controlling the intrusion of upper and lower portion of B-pillar in order to mitigate the injury to Euro SIDII dummy. At first, initial CAE evaluation of baseline vehicle was conducted.
Technical Paper

Improving Offset Crash Performance and Injury Mitigation via Multi-Body Simulation and Structural CAE

2014-04-01
2014-01-0939
Recent advancement in numerical solutions and advanced computational power has given a new dimension to the design and development of new products. The current paper focuses on the details of work done in order to improve the vehicle performance in Offset deformable Barrier (ODB) crash as per ECER-94. A Hybrid approach involving the Structural Crash CAE as well as Multi-body Simulation in MADYMO has been adopted. In first phase of the development, CAE results of Structural deformation as well as Occupant injury of the baseline model were correlated with physical test data. The second phase includes the improvement in intrusion and crash energy absorption by structural countermeasures in the vehicle body. In third phase parametric study has been carried out via Madymo simulation in order to decide on the factors which can be controlled in order to mitigate the Occupant injury. Recommendations of Madymo simulation have been confirmed by conducting Physical sled tests.
Technical Paper

Effect of Environmental Factors on the Function of an Automotive Luggage Cover of a Passenger Vehicle – A Case Study

2024-01-16
2024-26-0228
The Indian passenger vehicle market has grown by more than 40% by volume in the last decade and has reached a record high in FY23. This has created a more diverse and demanding customer base that values interior design and quality. The modern customer expects a high level of aesthetics and sophistication in their vehicle interiors - including in the luggage area. The Luggage Cover (Parcel Tray) is a component in the luggage area of a passenger vehicle that is used to conceal the luggage & improve its aesthetics. The cover is generally made of thermoplastic material with rotating hinges and is held in its place by the compression from the back door, which is frequently opened and closed. The parts that connect the cover to the door (usually an elastomer interface on the thermoplastic tray) tend to change over a period due to climatic conditions and leads to rattling concerns over a period.
Technical Paper

Passenger Car Front End Optimization Using CFD Simulation

2014-04-01
2014-01-0627
Increased engine thermal load, front end styling and compact vehicle requirements have led to significant challenges for vehicle front end designer to provide innovative thermal management solutions. The front end cooling module design which consists of condenser, radiator, fan and intercooler is an important part of design as it ensures adequate heat removal capacity of radiator over a wide range of operating conditions to prevent overheating of engine. The present study describes the optimization of cooling air flow opening in the front end using CFD methodology of a typical passenger car. The predicted vehicle system resistance curve and coolant inlet temperature to the radiator are used for the selection of cooling modules and to further optimize the front end cooling opening area. This leds to the successful optimization of the front end, selection of cooling modules with significant cost savings by reducing prototype testing and design cycle time.
X