Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Vibro-Acoustic Sensitivity Analysis of Automotive Engine Mounts for NVH Refinement

2011-04-12
2011-01-0494
Engine noise is a major source of noise inside the vehicle compartment. Recently, the quietness of the occupant cabin has become an important dimension to the quality of product. OEMs are finding it challenging to meet the customer expectations for “Powerful yet quiet” attribute. Several focused studies have been made to reduce the under hood component noise in automobiles. This paper summarizes the optimization of the vibro-acoustic sensitivity (VAS) of the engine mounts of a small car engine. The contribution of each engine mount on the structure-borne noise transfer inside the cabin is the prime focus of this study. In the current analysis, the body side and engine side mounting bracket stiffness analyses are carried out to reduce the vibro-acoustic transfer. Experimental methods like conventional FRF, on-road data acquisition and physical prototyping have been used.
Technical Paper

Cavitation Noise Countermeasure Development Approach in Hydromount

2011-10-06
2011-28-0091
Hydromount plays an important role in isolating vibration during idling. To meet ideal NVH criteria, a properly tuned Hydromount is required otherwise there will be abnormal noise due to cavitation effect. Cavitation noise is such a noise which is very difficult to identify in initial vehicle development stage. The effects of cavitation in the Hydromount become increasingly important for noise and performance goals. Cavitation is the formation and collapse of vapor bubbles in a working fluid when local static pressure falls below the vapor pressure of the working fluid. Technique to detect cavitation in Hydromount is presented in this paper. The countermeasure technique concentrates on increasing the fluid flow rate betweens fluid chambers. The results for different design countermeasure performance have been measured and the performance is compared in the vehicle. The results of vehicle level tests show the same trends as bench test results.
Technical Paper

Application and Development Challenges of Dynamic Damper in Cabin Booming Noise Elimination

2014-04-01
2014-01-0013
Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range.
Technical Paper

Design Optimization of Engine Mount Bracket to Reduce Various Gear Noises in the Passenger Car Cabin

2024-01-16
2024-26-0208
With the advancement of regulatory norms in automobile industry, there is a challenge to meet performance efficiency targets, especially with a lightweight platform, while providing superior driving experience to customers. The shift towards weight optimization, makes the vehicle structure more susceptible to transfer a diverse range of noise and vibrations through body. Although most undesirable noises perceived inside the cabin can be reduced by superior technology engine mounts and NVH packaging, all such solutions lead to cost addition. Intelligent considerations in part design can be used to supplement predictable transfer paths to quell the unwanted vibrations. One such case is of the gear whine noise in certain rpm bands caused by inherent gear meshing frequency coinciding with natural frequency of an engine mounting bracket.
X