Refine Your Search

Search Results

Viewing 1 to 7 of 7
Video

New Particulate Matter Sensor for On Board Diagnosis

2012-02-16
The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments. Presenter Atsuo Kondo, NGK Insulators, Ltd.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Journal Article

New Particulate Matter Sensor for On Board Diagnosis

2011-04-12
2011-01-0302
The reduction of greenhouse gas is becoming increasingly important for humankind, and vehicles with low CO₂ emissions have a part to play in any reduction initiatives. Diesel engines emit 30% less CO₂ than gasoline engines, so diesel engines will make an important contribution to the overall decrease. Unfortunately diesel exhaust gas contains particulate matter (PM) which may cause health problems, and such PM emissions are regulated by law. In order to reduce PM, especially soot, diesel particulate filters (DPFs) are widely fitted to diesel vehicles. A DPF can remove more than 99% by weight of soot from exhaust gas under normal operating conditions, and they are one of the most important methods to achieve any regulation targets. But if the system malfunctions, the PM emissions may exceed the regulation limit. To detect such PM leakage, on-board diagnostics (OBD) are required.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Technical Paper

Exhaust Gas Temperature Sensor for OBD-II Catalyst Monitoring

1996-02-01
960333
This paper describes a newly-developed, high-performance RTD,(Resistive Temperature detector), which meets OBD-II monitoring requirements. The OBD-II catalyst monitoring requirements are high temperature durability, high accuracy, and narrow piece-to-piece variation. Catalyst monitoring methods have been reviewed and studied by checking the catalyst exotherm(1)(2). The preliminary test results of catalyst monitoring are also described herein.
Technical Paper

Long Term Stable NOx Sensor with Integrated In-Connector Control Electronics

1999-03-01
1999-01-0202
This paper describes improvements achieved with regard to the long term stability and the system integrability of a previously described thick film NOx sensor for gasoline lean burn and diesel applications. (1, 2, 3) Durability test up to 1000 hours consisting of a temperature cycle have been carried out by a stoichiometric operating gasoline engine test bench. The NOx sensor demonstrates the NOx output shift in terms of the NOx sensitivity less than 5 % on a model gas apparatus and ± 7 % measuring accuracy in practical operating condition on a diesel engine after 1000 hours that is equivalent to approximately 60K miles driving. The integration of the control electronics for the sensor in its connector is achieved for the sensitive measuring current in the μA-range or less on vehicle applications. The developed electronics functions closed-loop controls for a tip temperature and oxygen pumps as well as a diagnosis of sensor malfunctions.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
X