Refine Your Search

Topic

Search Results

Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
Journal Article

Combustion Technology Development for a High Compression Ratio SI Engine

2011-08-30
2011-01-1871
Internal combustion engines still play a vital role in realizing the low carbon society. For spark ignition engines, further improvement in thermal efficiency can be achieved by increasing both compression and specific heat ratios. In the current work, the authors developed practical technologies to prevent output power loss due to knocking at full load, which is a critical issue for increasing compression ratio. These new technologies allowed to increase the compression ratio significantly and provide an equivalent torque level as a conventional engine. As a result, thermal efficiency has been improved at partial load.
Technical Paper

A Study of Performance Development and Optimization of 6106 Diesel Engine

2008-06-23
2008-01-1725
Working process of diesel engine refers to airflow, turbocharger, fuel injection, combustion, heat transfer and chemical reaction powers etc. Hence, it influences power output, fuel consumption, combustion noise and emissions, moreover directly influences reliability and durability of diesel engine. The working process of 6106 diesel engine is simulated by large universal internal combustion engine working process numerical simulation software GT-Power in this paper, and the effects of compression ratio, fuel supply advance angle and valve timing system on performance of diesel engine are analyzed. When valve-timing system is studied, the influence of intake valve close timing, exhaust valve open timing and valve overlap angle on performance are analyzed. On different operating conditions, the different timing of intake close and exhaust open, valve overlap were computed and analyzed. Finally, at different engine conditions, various optimum results were obtained.
Technical Paper

Numerical Study on Turbulent Two-Phase Flow in a Porous Media Combustion Chamber

2008-06-23
2008-01-1592
To understand the working mechanism of the porous medium (PM) internal combustion engine, effects of a porous medium heat regenerator inserted into a combustion chamber on the turbulent flow field and fuel-air mixture formation are studied by numerical simulation. The cylindrical chamber has a constant volume, in which a disk-shaped PM insert is fixed. A simplified model for the random structure of the PM is presented, in which the PM is represented by an assembly of a great number of randomly distributed solid units. To simulate flows in the PM a Brinkman-Forchheimer-extended Darcy's equation is introduced into the numerical solver. A version of two-equation k - ε turbulence model suggested by Antohe and Lage is employed for the turbulence prediction in the PM. A spray model, in which the effects of drop breakup, collision and coalescence are taken into account, is introduced to describe spray/wall interactions.
Technical Paper

Combustion Characteristics in Hydrogen Fueled Rotary Engine

1992-02-01
920302
A hydrogen-fueled rotary engine was investigated with respect to the effects of the fuel supply method, spark plug rating and spark plug cavity volume on abnormal combustion. It was found that abnormal combustion was caused by pre-ignition from the spark plugs and gas leakage through the plug hole cavity. The hydrogen-fueled rotary engine could function through a wide operating range at a theoretical air-to-fuel ratio by optimising the above factors. Consequently, the hydrogen-fueled rotary engine achieved output power of up to 63%-75% of the gasoline specification, while the hydrogen-fueled reciprocating engine only reached 50%.
Technical Paper

Influences of subgrid turbulent kinetic energy and turbulent dispersion on the characteristics of fuel spray

2011-08-30
2011-01-1839
A large eddy simulation approach and different breakup models are used to analyze fuel injection and atomization processes in a constant volume combustion bomb. The study is focused on the influences of the subgrid turbulent kinetic energy, especially the source term induced by the fuel spray, on the droplet movement and spray characteristics. Furthermore, the influence of different subgrid scale (SGS) models, including the constant coefficient and dynamic Smagorinsky models, WALE model and the K-equation turbulent energy transport model, on fuel sprays and the turbulent dispersion of droplets are examined. Factors affecting the fuel spray are discussed based on numerical computations for various operating conditions and are compared with experimental data.
Technical Paper

Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics

2013-10-14
2013-01-2554
This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

Development of Plastic Fuel Tank Using Modified Multi-Layer Blow Molding

1990-02-01
900636
A new and very practical technology has been developed to prevent gasoline permeation in plastic fuel tanks. The main body of the new tank is multi-layered, consist of high density polyethylene (HDPE), adhesive resin, polyamide (PA). The top and bottom parts of the tank are single layer consist of HDPE. This method has many advantages including such features as excellent gasoline permeation prevention, the processing time is the same as that for conventional blow molding methods, the method is safe because no toxic substances are used in the treatment process, the cost-performance ratio is excellent due to the minimum use of expensive auxiliaries (PA, adhesive resin), and the top and bottom single layer flashes can be re-used if they are pulverized.
Technical Paper

Experimental Study on Characteristics of Conical Spray and Combustion for Medium Speed D.I. Diesel Engine

1993-03-01
930598
This paper inverstigates a new way of conical spray for medium speed D. I. diesel engine, with which three different construction injectors were used. The feature of conical spray and fuel-air mixture formation were observed by means of schlieren photograph technique. The main result is that the cone top angle of conical injector has influence on formation of fuel-air mixture and performance of engine. The results of test on a single-cylinder engine show the premixed combustion phase was possessed of a large proportions of the whole combustion period, which was become a leading feature. The increasing interest in study of diesel engine combustion is caused by achieving even more stringent emission standards and greatly improving the fuel economy. From present status of this research the traditional combustion system which with orifice nozzel has already exposed some inherent drawbacks.
Technical Paper

An Experimental Investigation on Air-Fuel Mixture Formation Inside a Low-Pressure Direct Injection Stratified Charge Rotary Engine

1993-03-01
930678
Stratified charge engines have been getting attention for the drastic improvement in thermal efficiency at low-load region. There have been researchers on the two types of engines-the high pressure direct injection stratified charge type in which fuel is supplied directly at high pressure into its combustion chamber right before ignition timings, and the low pressure direct injection stratified charge type in which fuel is injected directly into its cylinder while the cylinder pressure is comparatively low[ 1- 3]. Rotary engines have higher freedom than reciprocating engines in terms of equipping direct fuel injection devices, since their combustion chambers rotate along the rotor housing. The fuel supply units, therefore, need not be exposed to high temperature combustion gas.
Technical Paper

Development of V6 Miller Cycle Gasoline Engine

1994-03-01
940198
A gasoline engine with an entirely new combustion cycle deriving from Miller Cycle is developed. By delaying closing timing of intake valve and with new Lysholm Compressor which provides higher boost pressure, engine knocking is avoided while high compression ratio is maintained and approximately 1.5 times larger toque than that of a naturally aspirated(NA) engine of the same displacement is realized. This V6 Miller Cycle gasoline engine can be the alternative to a larger displacement NA engine because of its equivalent torque performance and its lower fuel consumption by the effect of smaller displacement.
Technical Paper

Mechanism of Combustion Chamber Deposit Interference and Effects of Gasoline Additives on CCD Formation

1995-02-01
950741
Recently, an audible clattering noise has been noticed in some vehicles during cold engine starts, mainly in the U.S. The clattering is referred to by various names, such as “carbon knock,” “carbon rap,” “mechanical knock” and “combustion chamber deposit interference (CCDI).” CCDI is believed to be caused by the deposit formation in the combustion chamber. In the research effort described here, CCDI was successfully reproduced in a 2.5-liter multipoint injection engine with a polyolefin amine gasoline additive. It was determined that the CCDI was caused by mechanical contact between the piston top and the cylinder head deposits. The vibration due to CCDI originated mainly at the thrust side of the piston right after top-dead-center on compression stroke and was characterized by a high frequency response. Combustion chamber deposit (CCD) formation depends on many factors, including gasoline additives.
Technical Paper

Development of the Stratified Charge and Stable Combustion Method in DI Gasoline Engines

1995-02-01
950688
The new combustion method in DISC engine has been developed. It has a double structure combustion chamber characterized as ‘Caldera’. The chamber is constructed by a center cavity for the purpose of forming a stable mixture around a spark plug electrode, and by an outer cavity which has a role of a main chamber. This method makes possible a perfect un-throttling operation, and a fuel consumption equal to a diesel engine is achieved. With regard to an out-put of DISC engine, a stoichmetric combustion and a high torque are achieved by controling a fuel injection timing with an electro-magnetic injection system device. With regard to emission regulations, a heavy EGR include residual gas decreases greatly NOx and HC emissions simultaneously, and which suggests a possibility to achieve LEV/ULEV regulations.
Technical Paper

Mechanism of Improving Fuel Efficiency by Miller Cycle and Its Future Prospect

1995-02-01
950974
We have introduced a supercharged Miller Cycle gasoline engine into the market in 1993 as an answer to the requirement of reduction in CO2 emission of vehicles. Improvement in the fuel economy of a supercharged Miller Cycle engine is achieved by the reduction of friction loss due to a smaller displacement. The biggest problem of a conventional supercharged engine is knocking. In order to avoid the knocking, lower compression ratio, which accompanies lower expansion ratio, has been adopted by the conventonal engines and achieved insufficient fuel economy improvement. The Miller Cycle obtains superior anti-knocking performance as well as lowering compression ratio, while keeping the high expansion ratio. The decreased friction loss by the smaller displacement has completely lead to the improvement of fuel economy.
Technical Paper

A Study of Exhaust and Noise Emissions Reduction on a Single Spray Direct Injection

1989-02-01
890467
Exhaust and noise emissions were successfully reduced using a Single Spray Direct Injection Diesel Engine (SSDI) on a two-liter naturally-aspirated four-cylinder engine. The compression ratio, the swirl ratio and the pumping rate were optimized to obtain good fuel economy, high power output and low exhaust emissions. Furthermore, through a modification of the fuel injection equipment, hydrocarbon (HC) emissions were reduced. Upon a test vehicle evaluation of this engine, more than 11% fuel savings relative to Mazda two-liter Indirect Injection Diesel Engines (IDI) were obtained. As for engine noise, structural modifications of the engine were carried out to obtain noise emission levels equivalent to IDI.
Technical Paper

Development of Low Particulate Engine with Ceramic Swirl Chamber

1986-10-01
861407
An all-ceramic swirl chamber has been developed which meets the 1987 U.S. particulate emission standard for LDV. The all ceramic construction raises combustion temperature to reduce particulate emission to the necessary level. But particulate reduction led to two-fold increase in NOx. This problem was coped with by applying EGR and fuel injection timing control. As a result NOx has been cut to the same level as with a base engine and particulate has been further reduced.
Technical Paper

Analysis in cyclic combustion Variation in a Lean Operating S.I. Engine

1987-02-01
870547
The causes of the cyclic combustion variation in a lean operating SI engine have been identified using multivariate analysis on the pressure-time data. Principal component analysis on the combustion characteristics obtained from the pressure-time data was conducted in order to select an index of an optimal released heat pattern for analyzing the causes of the cyclic combustion variation. Using this index and the released heat quantity, the IMEP variation was subjected to multiple regression analysis to identify the causes of the cyclic combustion variation. Optimizing the fuel injection timing and swirl ratio made it possible to enrich the mixture near the spark plug. With the lean limit thus extended, a SI engine was operated in a lean range, and the resultant pressure-time data were analyzed. It was found that the main cause of the IMEP variation in the lean operating SI engine was the released heat quantity variation.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
X