Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Study of BioRID II Sled Testing and MADYMO Simulation to Seek the Optimized Seat Characteristics to Reduce Whiplash Injury

2004-03-08
2004-01-0336
Development of anti-whiplash technology is one of the hottest issues in the automotive safety field because of the frequent occurrence of rear impact accidents. We analyzed the whiplash mechanism and conducted a study to seek the optimized seat characteristics with BioRID II and MADYMO simulations. A parameter study was made to construct a conceptual theory to decrease NIC, Neck Injury Criteria, with the MADYMO model. As a result of the study, head restraint position and seatback stiffness were found to affect dummy movement and injury values. Applying the NIC mechanism and the influential parameters to the MADYMO model, the optimized seat characteristics for whiplash prevention were obtained.
Technical Paper

Introduction of Gear Noise Reduction Ring by Mechanism Analysis Including FEM Dynamic Tuning

2001-03-05
2001-01-0865
Reduction of transmission error by gear tooth profile optimization and tuning of gear resonance modes are known as effective methods for gear noise reduction. This paper concentrates on structuring a process for reducing gear noise using the latter method. The procedure comprises a study of gear noise mechanism from transmission error to radiation noise, an application of Steyer's method in gear frequency analysis and implementation of an invented device called “noise reduction ring”. This inexpensive and practical ring reduces gear noise drastically by 10dB, which is predicted by the simulation and verified by the experiment.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

2003-03-03
2003-01-1314
Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 6 - Numerical Analysis of Heat Transfer Characteristics by CRI

2012-04-16
2012-01-0640
In the present study, numerical simulation coupling convection and radiation in vehicle was done to analyze the formation of the temperature field under the non-uniform thermal condition. The scaled cabin model of simplified compact car was used and the thermal condition was determined. The fore floor, the top side of the inst. panel, the front window and the ceiling were heat source. The lateral side walls were cooled by the outdoor air and the other surfaces were adiabatic. It is same with the experimental condition presented in Part 5. In order to analyze the individual influence of each heat source, Contribution Ratio of Indoor climate (CRI) index was used. CRI is defined as the ratio of the temperature rise at a point from one individual heat source to the temperature rise under the perfect mixing conditions for the same heat source.
Technical Paper

Evaluation of Wind Noise Sources Using Experimental and Computational Methods

2006-04-03
2006-01-0343
Experiment and CFD have been performed to clarify the distribution of wind noise sources and its generation mechanism for a production vehicle. Three noise source identification techniques were applied to measure the wind noise sources from the outside and inside of vehicle. The relation between these noise sources and the interior noise was investigated by modifying the specification of underbody and front-pillar. In addition, CFD was preformed to predict the noise sources and clarify its generation mechanism. The noise sources obtained by simulation show good agreement with experiment in the region of side window and underbody.
Technical Paper

An Approach for Improving Correlation of Solid Finite Element Models

2005-05-16
2005-01-2370
The quest to simulate noise problems has led to the building of larger and more detailed finite element models in order to perform vibration solutions to higher frequencies. This leads to the building of solid finite element models of complex geometries, such as castings, which might previously have contained less detail or even been built with shell elements. Unfortunately, detailed geometric representations used to build models do not always agree with as built parts and lead to discrepancies between analysis results and test data. This paper presents an approach that reduces the time and cost necessary to identify these differences.
Technical Paper

Seat Lateral Support Evaluation With SAE Manikin

2005-04-11
2005-01-1006
In this report, we proposed an objective evaluation method of the seat lateral support according to the mechanisms to create the performance differences that we reported previously [1]. First, we showed an effect of scrutinizing Seat Pressure Distribution's change during vehicle turn to gain a quantitative index for explaining subjective evaluation results. Second, we showed the examples of the differences of the results according to the subjects and selected the best-correlated subject among them with a market survey result. Then, we contrived a loading condition to SAE manikin to reproduce the subject's Seat Pressure Distribution. Final, by a specific calculation of the Seat Pressure Distribution, the method to indicate the performance rating that had strong correlation with market survey was clarified.
Technical Paper

Seat Lumbar Support Evaluation With ASPECT Manikin

2005-04-11
2005-01-1007
Seat lumbar support is thought to be essential for seating comfort as it plays important role in the driver's fatigue during long term driving. We tried to evaluate the lumbar support performance objectively with Seat Pressure Distribution. First, the tolerance in the measurement was eliminated by application of ASPECT manikin that reproduced a human seating torso posture [1, 2]. Second, an analysis method to visualize the seat support balance on the human back was developed. Third, a hypothesis for the optimal support balance to minimize the fatigue was proposed according to the fatigue growing mechanisms. Examining the deviation of each seat result from the optimal support, the performances were quantitatively evaluated. In addition to that, the effect of the lumbar support adjuster was taken into consideration to predict the market evaluation more precisely.
Technical Paper

Experimental Transfer Path Analysis of Gear Whine

2005-05-16
2005-01-2288
Conventionally, the effort of gear whine reduction has focused on minimizing the transmission error generated in automobile transmission. In mean time, as demands on gear whine reduction increased, the need of controlling noise transfer path was arisen because transmission error turns into interior noise in those paths [1-2]. In this paper, we provide experimental technologies to clarify the noise transfer path which dominants high frequency gear whine from experimental point of view.
Technical Paper

Analysis of High Frequency Gear Whine Noise by Using an Inverse Boundary Element Method

2005-05-16
2005-01-2304
Some of the frequencies of transmission gear whine noise reach up to several kHz. High-frequency gear whine noise is mostly transmitted by air (airborne); therefore, it is critical to reduce transmission radiation noise. This paper presents how to solve the problem of high-frequency noise in the range of 2.0 - 4.1kHz by experiment using Inverse Boundary Element Method (IBEM) and by computer simulation using Boundary Element Method (BEM).
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Analysis of Heat Transfer Phenomena on High Response Heat Insulation Coatings by Instantaneous Heat Flux Measurement and Boundary Layer Visualization

2015-09-01
2015-01-1996
Coating the heat insulation materials on the combustion chamber walls is one of the solutions to reduce the cooling loss of internal combustion engines. In order to examine the coatings, the evaluation of the heat transfer coefficient and the analysis of the heat transfer phenomena on the heat insulated walls are important. Firstly, the highly-responsive wall temperature sensor is developed, and the instantaneous wall heat flux is measured to evaluate the heat transfer coefficient on the heat insulated walls. The results show that the Nusselt number on the heat insulated walls is less influenced by the Reynolds number variation than that on the metal walls. Secondly, the high speed µ-PIV is employed to analyze the various turbulent flow characteristics. The results show that the turbulent dissipation on the heat insulated walls is smaller than that on the metal walls.
Technical Paper

Wall Heat Transfer Modeling Based on the Energy Equation For Zero Dimensional Engine Simulation

2019-12-19
2019-01-2313
It was important for predicting wall heat flux to apply wall heat transfer model by taking into account of the behavior of turbulent kinetic energy and density change in wall boundary layer. Although energy equation base wall heat transfer model satisfied above requirements, local physical amounts such as turbulent kinetic energy in near wall region should be applied. In this study, in order to predict wall heat transfer by zero dimensional analysis, how to express wall heat transfer by using mean physical amounts in engine combustion chamber was considered by experimental and numerical approaches.
Technical Paper

Characteristics of Flat-Wall Impinging Spray Flame and Its Heat Transfer under Small Diesel Engine-Like Condition

2017-11-05
2017-32-0032
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
Technical Paper

Review of Aerodynamic Noise Prediction Using CFD

1999-03-01
1999-01-1126
Recently, computational fluid dynamics (CFD) has made great progress. This paper reviews published papers on aerodynamic noise simulated by CFD and studies to what level CFD can predict aerodynamic noise for basic models and for applied models of automobiles. Based on noise generation mechanisms, aerodynamic noise is basically classified into two types, that is, noise induced by two-dimensional flow and by three-dimensional flow. As typical examples of noise generated by two-dimensional flow, wind throb at opened sliding roof, edge tone at the end of liftgate and aeolian tone generated by a cylindrical antenna are simulated by several computational schemes. As typical examples of three-dimensional flow, noise generated by A-pillar longitudinal vortex and noise from a side view mirror are computed by using a wing model and a actual vehicle, respectively.
Technical Paper

Development of film heat transfer model based on multiphase flow numerical analysis

2023-09-29
2023-32-0012
Automobiles will have to be applied strict regulations such as Euro7 against PM, HC, CO. The generation of these components are related to fuel deposition to the wall surface of the combustion chamber. Therefore, the fuel injection model of engine combustion CFD requires accurate prediction about the deposition and vaporization of fuel on the combustion chamber. In this study, multiphase flow numerical analysis that simulates fuel behavior on the wall surface was conducted first. Then, two model formulae about the contact area and the heat flux of a liquid film was constructed based on the result of multiphase flow numerical analysis method. Finally, the new film heat transfer model was constructed from these model formulae. In addition, it was confirmed that new heat transfer model can predict the liquid film temperature obtained by multiphase flow numerical analysis method accurately.
X