Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Friction Calculations and Validation Measures on an External Component Test Bench of the Piston Pin Bearing under the Influence of Greater Elastic Deformation Caused by a Hydrostatic Bearing

2021-09-05
2021-24-0001
Increasing combustion pressure, low viscosity oils, less oil supply and the increasing stress due to downsizing of internal combustion engines (ICE) lead to higher loads within the bearing. As the mechanical and tribological loads on the piston pin bearings have a direct impact on the service life and function of the overall engine system, it is necessary to develop a robust tribological design approach. Regarding the piston pin bearing of a diesel engine, this study aims to describe the effects of different parameters on a DLC-coated piston pin within the bearing. Therefore, an external engine part test rig, which applies various forces to the connecting rod and measures the torque on a driven pin, is used to carry out validation measurements. The special feature of the test bench is the way the piston is beared. For the first experiments, the piston crown is placed against a plate (plate-bearing); later, this plate-bearing is replaced by a hydrostatic bearing.
Technical Paper

Temperature Compensation with Thermovariable Rate Springs in Automatic Transmissions

1991-02-01
910805
The shifting comfort of automatic transmissions of diesel engines at low temperatures can be substantially improved by using springs with temperature dependent rates in the control valves. These springs utilize the shape memory effect of Ni-Ti alloys. They provide a simple and economic way to control both shifting pressure and shifting time. The Mercedes- Benz automatic transmission uses two different springs with thermovariable rate (TVR) in the shifting pressure system to adapt the pressure in the switching elements to the lower torque of cold diesel engines. One spring is used in the shifting pressure control valve and one in the accumulator system.
Technical Paper

The New Mercedes-Benz Engine Brake with Decompression Valve

1992-02-01
920086
During the past few years, economy of commercial vehicles has increased considerably due to higher engine outputs a+ lower engine speeds together with enhanced fuel economy. However, the average speed of commercial vehicles is not only determined by the speed attainable on level ground and on uphill gradients, but also to a large extent by the speed attainable on downhill gradients, with the latter depending on the available constant braking power. Since the displacement of commercial vehicle engines has not been increased or has even become smaller, their braking power has increased only slightly ot not at all. In order to enhance the overall economy of commercial vehicles, it was therefore necessary to increase the engine braking performance as well since the wheel brakes cannot be used for constant braking and additional systems for continuous operation are very complex.
Technical Paper

Variable Gas Exchange Systems for S.I. Engines - Layout and Experimental Data

1992-02-01
920296
Load control by means of early intake valve closing (EIVC) permits brake mean effective pressure (BMEP) to be improved by as much as 14 % at full load and pumping losses in part load to be reduced comparable to the unthrottled engine. Concomitant to this, though, the marginal conditions for good mixture formation and part load combustion optimized for efficiency are greatly impaired. With ideal mixture formation, improvements in specific part load consumption (BSFC) of the order of 8 to 12 % are achievable. The mixture formation which occurs at low part load in the combustion chamber itself is not effective as the charge motion induced by the inflow process with EIVC dies away rapidly and at the same time fuel still condenses. The inhomogeneities to which this gives rise impair ignition conditions and the combustion pattern, which greatly limits the actual useful work of the theoretical charge cycle benefit.
Technical Paper

An Overview of Electronic Intelligence in Future Commercial Vehicle Generations

1993-11-01
933004
The consequent means towards improved enhancement of the safety of commercial vehicles will in future times require more and more electronic intelligence, in case a distinct optimization of the systems will not be possible with conventional means. In forefront, endeavours are aimed at the improvements of the functions of the system in regard to driving safety, as well as driver stress relief at lowest possible costs, in order to increase the total cost effectiveness of commercial vehicles. Starting with currently implemented electronic systems up to systems now under development, a continuous development of standalone electronics up to integrated electronic compounding is the current trend. This trend shows advantages of reduced wiring and the number of sensors while it increases the function at the same time.
Technical Paper

Secondary Air Injection with a New Developed Electrical Blower for Reduced Exhaust Emissions

1994-03-01
940472
Secondary air injection after cold start gives two effects for reduced exhaust emissions: An exothermic reaction at the hot exhaust valves occurs, which increases the temperature of the exhaust gas. It gives sufficient air to the catalyst during the cold start fuel enrichment that is necessary to prevent driveability problems. Handicaps for the wide use of air injection include space constraints, weight and price. An electrical air blower was choosen to best satisfy all these requirements. The development steps are described. The result is a three stage radialblower with extremly high revolutions of about 18000 rpm. The system configuration and the outcome are demonstrated on the new C-Class of Mercedes-Benz. The results show emission reductions higher than 50 %, while also satisfying the development goals of noise, volume, weight and cost requirements.
Technical Paper

The New Mercedes-Benz Engine Brake with Pulsed Decompression Valve -Decompression Valve Engine Brake (DVB)

1994-11-01
942266
During recent years there has been a continuing increase in the demands for higher braking performance of commercial vehicle engines. Mercedes-Benz had introduced the engine brake with continuously open decompression valve (‘Konstantdrossel’) into series production in 1989 as an option (1). A further increase of braking power was to be achieved while retaining the additional decompression valve in the cylinder head. For this, the decompression valve was no longer kept open during the whole working cycle (continuously open decompression valve), but only for a short period from just before compression TDC to about 90...120° crank angle after compression TDC (pulsed decompression valve). The hydraulic actuating system which opens and closes the decompression valves was developed in cooperation with Mannesmann-Rexroth GmbH, Lohr, Germany. The engine braking performance attainable with this system is shown in comparison to other known engine braking systems.
Technical Paper

Influence of the Inlet Port and Combustion Chamber Configuration on the Lean-Burn Behaviour of a Spark-Ignition Gasoline Engine

1996-02-01
960608
The influence of different port designs on the generation of a swirl flow is described on the basis of stationary and non-stationary flow analyses. Subsequently, engine test bench analyses with a 3-valve one-cylinder engine were performed to assess the aforementioned port configurations with respect to their influence on the lean-burn behaviour. The most favourable port design was then used to analyse various combustion chamber shapes in order to further improve the engine behaviour during lean-burn operation and to select the most promising combustion chamber variant. Finally, the port and combustion chamber configurations thus identified were applied in vehicle simulation tests with lean-burn and EGR-burn operation to check the emission behaviour for compliance with the future European level 3 emission limits.
Journal Article

Experimental and Numerical Investigation of a Full-Sized Aerodynamic Vehicle Model in Relation to Its Production Car

2021-04-06
2021-01-0963
In this paper, the differences between a production car of the 2018 A-class and an early stage vehicle model with a mostly similar outer skin are examined experimentally and numerically. The aerodynamic development of vehicles at Mercedes-Benz is divided into several phases. When comparing force coefficients differences can be observed between these distinct hardware stages as well as when comparing steady state simulations to wind tunnel measurements. In early phases when prototype vehicles are not yet available, so-called aero foam models are used. These are well-defined full-sized vehicle models, as the outer skin is milled from Polyurethane. Important aerodynamic characteristics such as a motor compartment with a cooling module, deflecting axles with rotatable wheels and underbody covers are represented.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Journal Article

Investigations on the Spray-Atomization of Various Fuels for an Outwardly Opening Piezo Injector for the Application to a Pilot Injection Passenger Car Gas Engine

2020-09-15
2020-01-2117
Pilot injection gas engines are commonly used as large stationary engines. Often, the combustion is implemented as a dual-fuel strategy, which allows both mixed and diesel-only operation, based on a diesel engine architecture. The current research project focuses on the application of pilot injection in an engine based on gasoline components of the passenger car segment, which are more cost-effective than diesel components. The investigated strategy does not aim for a diesel-only combustion, hence only small liquid quantities are used for the main purpose of providing a strong, reliable ignition source for the natural gas charge. This approach is mainly driven to provide a reliable alternative to the high spark ignition energies required for high cylinder charge densities. When using such small liquid quantities, a standard common-rail diesel nozzle will apparently not be ideal regarding some general specifications.
Journal Article

Comprehensive Evaluation of Logging Frameworks for Future Vehicle Diagnostics

2023-06-26
2023-01-1223
More and more applications (apps) are entering vehicles. Customers would like to have in-car apps in their infotainment system, which they already use regularly on their smartphones. Other apps with new functionalities also inspire vehicle customers, but only as long as the customer can utilize them. To ensure customer satisfaction, it is important that these apps work and that failures are found and corrected as quickly as possible. Therefore, in-car apps also implicate requirements for future vehicle diagnostics. This is because current vehicle diagnostic methods are not designed for handling dynamic software failures of apps. Consequently, new diagnostic methods are needed to support the diagnosis of in-car apps. Log data are a central building block in software systems for system health management or troubleshooting. However, there are different types of log data and log environment setups depending on the underlying system or software platform.
X