Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The New 4-Valve 6 Cylinder 3,0 Liter Mercedes-Benz Diesel Engine for the Executive Class Passenger Vehicle

1993-10-01
932875
After the introduction of four-valve technology for gasoline powered passenger cars, Mercedes-Benz consistently developed this technology also for Diesel engines. Based on the proven success of the prechamber combustion system, this new Diesel engine generation, which includes 4, 5 and 6-cylinder naturally-aspirated engines, will be the first four-valve Diesel engines to be installed in passenger cars. The naturally aspirated 3.0 liter 6-cylinder in-line engine which represents the high end of this generation will be offered for sale in all 50 states of the USA in the Executive Class models starting on January 1, 1994. Four-valve technology allows the prechamber to be located centrally between the intake and exhaust valves which results in a major improvement of the combustion process. In addition, this 6-cylinder engine has a resonance intake system controlled by two butterfly valves to maximize the volumetric efficiency of the engine.
Technical Paper

An Overview of Electronic Intelligence in Future Commercial Vehicle Generations

1993-11-01
933004
The consequent means towards improved enhancement of the safety of commercial vehicles will in future times require more and more electronic intelligence, in case a distinct optimization of the systems will not be possible with conventional means. In forefront, endeavours are aimed at the improvements of the functions of the system in regard to driving safety, as well as driver stress relief at lowest possible costs, in order to increase the total cost effectiveness of commercial vehicles. Starting with currently implemented electronic systems up to systems now under development, a continuous development of standalone electronics up to integrated electronic compounding is the current trend. This trend shows advantages of reduced wiring and the number of sensors while it increases the function at the same time.
Technical Paper

Secondary Air Injection with a New Developed Electrical Blower for Reduced Exhaust Emissions

1994-03-01
940472
Secondary air injection after cold start gives two effects for reduced exhaust emissions: An exothermic reaction at the hot exhaust valves occurs, which increases the temperature of the exhaust gas. It gives sufficient air to the catalyst during the cold start fuel enrichment that is necessary to prevent driveability problems. Handicaps for the wide use of air injection include space constraints, weight and price. An electrical air blower was choosen to best satisfy all these requirements. The development steps are described. The result is a three stage radialblower with extremly high revolutions of about 18000 rpm. The system configuration and the outcome are demonstrated on the new C-Class of Mercedes-Benz. The results show emission reductions higher than 50 %, while also satisfying the development goals of noise, volume, weight and cost requirements.
Technical Paper

Analysis of a Direct Injected Gasoline Engine

1997-02-24
970624
The principle strategy, the development emphasis, and the investigation parameters of a DI gasoline engine are discussed. Several different combustion systems are briefly described and one system where the spark plug is located near the fuel injector is investigated. In addition, the influence of different operating parameters are studied. Some reasons for the improvement in the efficiency of a DI gasoline engine are shown with the help of thermodynamic analysis and simulation calculations. These show that at a constant operating point (engine speed = 2000 rpm, bmep = 2 bar) there is a reduction of the fuel consumption of 23% at unthrottled conditions in comparison to the homogeneous stoichiometric operation. In particular, the reduction of the pumping and heat losses and the reduction of the exhaust gas energy are responsible for this fuel consumption reduction.
Technical Paper

Evaluation of NOx Storage Catalysts for Lean Burn Gasoline Fueled Passenger Cars

1997-02-24
970746
Engine and laboratory tests were carried out to examine the performance of NOx adsorption catalysts for gasoline lean burn engines in fresh and aged condition. The results show that fresh NOx adsorption catalysts have the potential to meet EURO III emission standards. However, to accomplish these the fuel must contain a low sulfur concentration and the engine must be tuned to optimize the efficiency of the catalyst. After engine or furnace aging upto 750°C the catalyst shows some loss of NOx adsorption efficiency. This deterioration can be offset somewhat by increasing the frequency of lean/rich switching of the engine. Temperatures higher than 750°C may cause an irreversible destruction of the NOx, storage features while the three-way activity of the catalyst remains intact or even may improve. With reference to several physicochemical investigations it is believed that the detrimental effect of catalyst aging is attributed to two different deactivation modes.
Technical Paper

Experimental and Numerical Investigation of Rim Aerodynamics

2022-03-29
2022-01-0891
The automotive industry is facing new emission regulations, changing customer preferences and technology disruptions. All have in common, that external aerodynamics plays a crucial role to achieve emission limits, reduce fuel consumption and extend electric driving range. Probably the most challenging components in terms of numerical aerodynamic drag prediction are the wheels. Their contribution to the overall pressure distribution is significant, and the flow topology around the wheels is extremely complicated. Furthermore, deltas between different rim designs can be very small, normally in the range of only a few drag counts. Therefore, highly accurate numerical methods are needed to predict rim rankings and deltas. This paper presents experimental results of four different production rim designs, mounted to a modified production car. An accurate representation of the loaded, deformed tire geometry is used in all calculations for comparable conditions between wind tunnel and CFD.
Journal Article

Comprehensive Evaluation of Logging Frameworks for Future Vehicle Diagnostics

2023-06-26
2023-01-1223
More and more applications (apps) are entering vehicles. Customers would like to have in-car apps in their infotainment system, which they already use regularly on their smartphones. Other apps with new functionalities also inspire vehicle customers, but only as long as the customer can utilize them. To ensure customer satisfaction, it is important that these apps work and that failures are found and corrected as quickly as possible. Therefore, in-car apps also implicate requirements for future vehicle diagnostics. This is because current vehicle diagnostic methods are not designed for handling dynamic software failures of apps. Consequently, new diagnostic methods are needed to support the diagnosis of in-car apps. Log data are a central building block in software systems for system health management or troubleshooting. However, there are different types of log data and log environment setups depending on the underlying system or software platform.
X