Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Analysis of Particle Mass and Size Emissions from a Catalyzed Diesel Particulate Filter during Regeneration by Means of Actual Injection Strategies in Light Duty Engines

2011-09-11
2011-24-0210
The diesel particulate filters (DPF) are considered the most robust technologies for particle emission reduction both in terms of mass and number. On the other hand, the increase of the backpressure in the exhaust system due to the accumulation of the particles in the filter walls leads to an increase of the engine fuel consumption and engine power reduction. To limit the filter loading, and the backpressure, a periodical regeneration is needed. Because of the growing interest about particle emission both in terms of mass, number and size, it appears important to monitor the evolution of the particle mass and number concentrations and size distribution during the regeneration of the DPFs. For this matter, in the presented work the regeneration of a catalyzed filter was fully analyzed. Particular attention was dedicated to the dynamic evolution both of the thermodynamic parameters and particle emissions.
Journal Article

The Key Role of the Closed-loop Combustion Control for Exploiting the Potential of Biodiesel in a Modern Diesel Engine for Passenger Car Applications

2011-06-09
2011-37-0005
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the capability of GM Combustion Closed-Loop Control (CLCC) in enabling seamless operation with high biodiesel blending levels in a modern diesel engine for passenger car applications. As a matter of fact, fuelling modern electronically-controlled diesel engines with high blends of biodiesel leads to a performance reduction of about 12-15% at rated power and up to 30% in the low-end torque, while increasing significantly the engine-out NOx emissions. These effects are both due to the interaction of the biodiesel properties with the control logic of the electronic control unit, which is calibrated for diesel operation. However, as the authors previously demonstrated, if engine calibration is re-tuned for biodiesel fuelling, the above mentioned drawbacks can be compensated and the biodiesel environmental inner qualities can be fully deployed.
Technical Paper

Comparative Analysis of Different Methodologies to Calculate Lambda (λ) Based on Extensive And systemic Experimentation on a Hydrogen Internal Combustion Engine

2023-04-11
2023-01-0340
Hydrogen Internal Combustion Engines (H2-ICEs) are subject to increased attention thanks to their extremely low criteria pollutant emission and near-zero CO2 tailpipe emissions. However, to further minimize exhaust emissions and increase the efficiency of a H2-ICE, it is important to carefully control the relative air-fuel ratio of operation, i.e. Lambda (λ), which will lead in turn to an optimal combustion process. The precise λ control mainly relies upon the methodology to calculate λ on board of the engine, where the availability of reliable sensors specifically-developed for hydrogen combustion is currently limited. In this article, a comparative analysis of different methodologies for the calculation of λ is performed, comparing four methodologies: exhaust gas analysis through a Spindt-Brettschneider approach (λEMI), raw Universal Exhaust Gas Oxygen (λR-UEGO), processed Universal Exhaust Gas Oxygen (λP-UEGO) and speed-density (λSD) outputs.
X