Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Insult to the Human Cadaver Patellofemoral Joint: Effects of Age on Fracture Tolerance and Occult Injury

1995-11-01
952729
Lower extremity (knee) trauma is currently based on a bone fracture criterion derived from impacts of aged specimens. Recent clinical studies, however, indicate that a chronic disease (post-traumatic osteoarthritis), may be precipitated after mechanical insult without obvious bone fracture(1). It is hypothesized this is due to microcracking of subchondral bone under cartilage. This hard tissue layer is known to change with age and pathology. Ten ‘aged’ (71 years) and ten ‘young’ (47 years) cadaver knee joints were impacted to study the influence of age and pathology on the fracture load, and incidents of occult injury. Our results indicate that fracture load, per se, was independent of specimen age. On the other hand, severely pathological specimens required significantly higher loads to fracture bone. Occult microcraking was also observed in subfracture experiments, however, fewer incidents were recorded for the ‘aged’ specimens.
Technical Paper

The Effects of Subfracture Impact Loading on the Patellofemoral Joint in a Rabbit Model

1996-11-01
962422
This study showed that subfracture impact loading to a joint creates stresses in cartilage and bone which can initiate a chronic osteoarthrosis. The magnitude and location of the impact induced stresses are dependent on the orientation and the intensity of loading. Impact loading produced lesions on retro-patellar cartilage and their depths increased as the thickness of subchondral bone increased with time post-impact. Mechanical tests of cartilage indicated significant softening twelve months post-impact. These alterations are similar to those documented clinically as early OA. In vitro impacts of isolated limbs, together with mathematical models, showed that high mean stress generated during impact may help protect joint tissues from acute injury. This study and others are being used to develop stress-based tissue failure criteria for predicting an osteoarthrosis following subfracture impact loading.
Technical Paper

The Effect of Loading Rate on the Degree of Acute Injury and Chronic Conditions in the Knee After Blunt Impact

2000-11-01
2000-01-SC20
Lower extremity injuries due to automobile accidents are often overlooked, but can have a profound societal cost. Knee injuries, for example, account for approximately 10% of the total injuries. Fracture of the knee is not only an acute issue but may also have chronic, or long term, consequences. The criterion currently used for evaluation of knee injuries in new automobiles, however, is based on experimental impact data from the 70''s using seated human cadavers. These studies involved various padded and rigid impact interfaces that slightly alter the duration of contact. Based on these data and a simple mathematical model of the femur, it appears fracture tolerance increases as contact duration shortens. In contrast, more recent studies have shown mitigation of gross fractures of the knee itself using padded interfaces. The use of padded interfaces, however, result in coincidental changes in contact duration and knee contact area.
Technical Paper

The Effect of Impact Angle on Knee Tolerance to Rigid Impacts

2003-10-27
2003-22-0001
While the number of deaths from vehicle accidents is declining, probably because of mandatory seat belt laws and air bags, a high frequency of lower extremity injuries from frontal crashes still occurs. For the years 1979-1995 the National Accident Sampling System (NASS) indicates that knee injuries (AIS 1-4) occur in approximately 10% of cases. Patella and femur fractures are the most frequent knee injuries. Current literature suggests that knee fractures occur in seated cadavers for knee impact forces of 7.3 to 21.0 kN. Experimental data shown in a study by Melvin et al. (1975) further suggests that fracture tolerance of the knee may be reduced for an impact directed obliquely to the axis of the femur. The current study hypothesized that the patella is more vulnerable to fracture from an oblique versus an axial impact (directed along the femoral axis), and that the fracture pattern would vary with impact direction.
X