Refine Your Search

Topic

Author

Search Results

Journal Article

A Novel Singular Perturbation Technique for Model-Based Control of Cold Start Hydrocarbon Emission

2014-04-01
2014-01-1547
High hydrocarbon (HC) emission during a cold start still remains one of the major emission control challenges for spark ignition (SI) engines in spite of about three decades of research in this area. This paper proposes a cold start HC emission control strategy based on a reduced order modeling technique. A novel singular perturbation approximation (SPA) technique, based on the balanced realization principle, is developed for a nonlinear experimentally validated cold start emission model. The SPA reduced model is then utilized in the design of a model-based sliding mode controller (SMC). The controller targets to reduce cumulative tailpipe HC emission using a combination of fuel injection, spark timing, and air throttle / idle speed controls. The results from the designed multi-input multi-output (MIMO) reduced order SMC are compared with those from a full order SMC. The results show the reduced SMC outperforms the full order SMC by reducing both engine-out and tailpipe HC emission.
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Journal Article

A Comparison of Cold-Start Behavior and its Impact on Fuel Economy for Advanced Technology Vehicles

2014-04-01
2014-01-1375
Vehicle operation during cold-start powertrain conditions can have a significant impact on drivability, fuel economy and tailpipe emissions in modern passenger vehicles. As efforts continue to maximize fuel economy in passenger vehicles, considerable engineering resources are being spent in order to reduce the consumption penalties incurred shortly after engine start and during powertrain warmup while maintaining suitably low levels of tailpipe emissions. Engine downsizing, advanced transmissions and hybrid-electric architecture can each have an appreciable effect on cold-start strategy and its impact on fuel economy. This work seeks to explore the cold-start strategy of several passenger vehicles with different powertrain architectures and to understand the resulting fuel economy impact relative to warm powertrain operation. To this end, four vehicles were chosen with different powertrain architectures.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

1998-02-23
980818
The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

Design and Analysis of an Adaptive Real-Time Advisory System for Improving Real World Fuel Economy in a Hybrid Electric Vehicle

2010-04-12
2010-01-0835
Environmental awareness and fuel economy legislation has resulted in greater emphasis on developing more fuel efficient vehicles. As such, achieving fuel economy improvements has become a top priority in the automotive field. Companies are constantly investigating and developing new advanced technologies, such as hybrid electric vehicles, plug-in hybrid electric vehicles, improved turbo-charged gasoline direct injection engines, new efficient powershift transmissions, and lighter weight vehicles. In addition, significant research and development is being performed on energy management control systems that can improve fuel economy of vehicles. Another area of research for improving fuel economy and environmental awareness is based on improving the customer's driving behavior and style without significantly impacting the driver's expectations and requirements.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

Design and Development of the 2001 Michigan Tech FutureTruck, a Power-Split Hybrid Electric Vehicle

2002-03-04
2002-01-1212
In this paper, the conversion of a production SUV to a hybrid electric vehicle with a drive system utilizing a planetary power-split transmission is presented. The uniqueness of this design comes from its ability to couple the advantages of a parallel hybrid with the advantages of a series hybrid. Depending on operating conditions and recent operating history, the drive system transitions to one of several driving modes. The drive system consists of a planetary gear set coupled to an alternator, motor, and internal combustion engine. It performs the power-split operation without the need for belt drives or clutching devices. The effects on driveability, manufacturing, fuel economy, emissions, and performance are presented along with the design, selection, and implementation of all of the vehicle conversion components.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Design and Testing of a Four-Stroke, EFI Snowmobile with Catalytic Exhaust Treatment

2001-09-24
2001-01-3657
The successful implementation of a clean, quiet, four-stroke engine into an existing snowmobile chassis has been achieved. The snowmobile is easy to start, easy to drive and environmentally friendly. The following paper describes the conversion process in detail with actual engine test data. The hydrocarbon emissions of the new, four-stroke snowmobile are 98% lower than current, production, two-stroke models. The noise production of the four-stroke snowmobile was 68 dBA during an independent wide open throttle acceleration test. If the four-stroke snowmobile were to replace all current, two-stroke snowmobiles in Yellowstone National Park (YNP), the vehicles would only produce 16% of the combined automobile and snowmobile hydrocarbon emissions compared to the current 93% produced by two-stroke snowmobiles.
Technical Paper

National Science Foundation Workshop on Environmentally Benign Manufacturing for the Transportation Industries

2002-03-04
2002-01-0593
The National Science Foundation recently sponsored a Workshop on Environmentally Benign Manufacturing (EBM) for the Transportation Industries. The objective of the workshop was to determine future directions of research in the EBM area and to construct a roadmap for development of future research programs. While research in the fields of Design for the Environment (DfE) and Life Cycle Analysis (LCA) have focused on the product and product life cycles, an additional focus is needed to find and develop processes with less environmental impact within the manufacturing environment. This workshop explored EBM issues with respect to the enterprise, the products, the processes and the materials.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

Numerical Simulation of Autoignition of Gasoline-Ethanol/Air Mixtures under Different Conditions of Pressure, Temperature, Dilution, and Equivalence Ratio.

2011-04-12
2011-01-0341
A numerical simulation of autoignition of gasoline-ethanol/air mixtures has been performed using the closed homogeneous reactor model in CHEMKIN® to compute the dependence of autoignition time with ethanol concentration, pressure, temperature, dilution, and equivalence ratio. A semi-detailed validated chemical kinetic model with 142 species and 672 reactions for a gasoline surrogate fuel with ethanol has been used. The pure components in the surrogate fuel consisted of n-heptane, isooctane and toluene. The ethanol volume fraction is varied between 0 to 85%, initial pressure is varied between 20 to 60 bar, initial temperature is varied between 800 to 1200K, and the dilution is varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a spark-ignition engine. The ignition time is taken to be the point where the rate of change of temperature with respect to time is the largest (temperature inflection point criteria).
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Development of Steel Clad Aluminum Brake

2013-09-30
2013-01-2054
Aluminum based brake rotors have been a priority research topic in the DOE 1999 Aluminum Industry Roadmap for the Automobile Market. After fourteen years, no satisfactory technology has been developed to solve the problem of aluminum's low working temperatures except the steel clad aluminum (SCA) brake technology. This technology research started at Michigan Technological University (MTU) in 2001 and has matured recently for commercial productions. The SCA brake rotor has a solid body and replaces the traditional convective cooling of a vented rotor with conductive cooling to a connected aluminum wheel. Much lower temperatures result with the aluminum wheel acting as a great heat sink/radiator. The steel cladding further increases the capability of the SCA rotor to withstand higher surface temperatures. During the road tests of SCA rotors on three cars, significant gas mileage improvement was found; primarily attributed to the unique capability of the SCA rotor on pad drag reduction.
Technical Paper

A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation

1997-05-19
971804
A computer simulation of the turbocharged direct- injection diesel engine was developed to enhance the capabilities of the Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University. The engine model was extensively validated against Detroit Diesel Corporation's (DDC) Series 60 engine data. In addition to the new engine model a charge-air-cooler model was developed and incorporated into the VECSS. A Freightliner truck with a Detroit Diesel's Series 60 engine, Behr McCord radiator, AlliedSignal/Garrett Automotive charge air cooler, Kysor DST variable speed fan clutch and other cooling system components was used for the study. The data were collected using the Detroit Diesel Electronic Controls (DDEC)-Electronic Control Module (ECM) and Hewlett Packard data acquisition system. The enhanced model's results were compared to the steady state TTD (top tank differential) data.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
Technical Paper

Strain Path Effects on the Modified FLD Caused by Variable Blank Holder Force

1995-02-01
950695
The objective in this research is to investigate the effects of variable blank holder force (VBHF) on the material formability, due to its effect on the strain path. It is found in a recent study [9] that VBHF does not significantly affect the overall trend of the strain path. This strain path in deep drawing process is linear for the materials in the flange and under punch face, and is roughly bi-linear for the material around the punch nose. The second segment of the strain path in the punch nose region is plane-strain. VBHF, however, affects the strain ratio ρ1 = ε2/ε1 of the first segment of the bi-linear strain path. These effects, especially ρ1, on limit strain were studied using M-K method. A strain path dependent modified forming limit diagram (MFLD) was calculated based on the actual strain path. It is found that the MFLD is strongly dependent on ρ1.
Technical Paper

Compound Port Fuel Injector Nozzle Droplet Sizes and Spray Patterns

1996-02-01
960114
The goal of this research was to determine an empirical method of relating the droplet sizes and the spray patterns to the parameters and the geometries of the compound nozzles. Two different types of compound nozzles were studied, the compound silicon micro machined nozzle and the compound metal disk nozzle. Several different orifice geometries of each nozzle type were examined. The injector components upstream of the compound nozzle of two different types of injectors were also studied. A nondimensional characterization of the droplet sizes and the mass flow rates was proposed. The results of this study show that there exists optimum geometric features that will produce sprays with the minimum steady state and dynamic Sauter mean diameter. The spray of a compound nozzle can be characterized by the atomization efficiency and the discharge coefficient. Nozzle testing results show that many flow characteristics are developed in the compound nozzle.
Technical Paper

Exhaust Flow Separation in a Two Stroke Engine

1996-02-01
960744
The two stroke direct injected gasoline engine is in part characterized by low temperature exhaust flow, particularly at light loads, due to the fresh air scavenging of the combustion chamber during the exhaust process. This study investigated the possibility of separating the exhaust flow into two regimes: 1) high temperature flow of the combustion products, and 2) low temperature flow from the fresh air scavenging process. Separation of the exhaust flow was accomplished by a mechanical device placed in the exhaust stream. In this way, emissions from the exhaust could be handled by two different catalysts and/or processes, each optimized for different temperature ranges and flow compositions. The first portion of this study involved validation of a computer model, using experimental data from a single cylinder engine with a stationary exhaust port and splitter.
Technical Paper

Research Advances in Dry and Semi-Dry Machining

1997-02-24
970415
The current trend in the automotive industry is to minimize/eliminate cutting fluid use in most machining operations. Research is required prior to achieving dry or semi-dry machining. Issues such as heat generation and transfer, thermal deformation and fluid lubricity related effects on tool life and surface roughness determine the feasibility of dry machining. This paper discusses recent advances in achieving dry/semi-dry machining. As the first step, research has been conducted to investigate the actual role of fluids (if any) in various machining operations. A predictive heat generation model for orthogonal cutting of visco-plastic material was created. A control volume approach allowed development of a thermal model for convective heat transfer during machining. The heat transfer performance of an air jet in dry machining was explored. The influence of machining process variables and cutting fluid presence on chip morphology was investigated through designed experiments.
X