Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Simulation of Autoignition of Gasoline-Ethanol/Air Mixtures under Different Conditions of Pressure, Temperature, Dilution, and Equivalence Ratio.

2011-04-12
2011-01-0341
A numerical simulation of autoignition of gasoline-ethanol/air mixtures has been performed using the closed homogeneous reactor model in CHEMKIN® to compute the dependence of autoignition time with ethanol concentration, pressure, temperature, dilution, and equivalence ratio. A semi-detailed validated chemical kinetic model with 142 species and 672 reactions for a gasoline surrogate fuel with ethanol has been used. The pure components in the surrogate fuel consisted of n-heptane, isooctane and toluene. The ethanol volume fraction is varied between 0 to 85%, initial pressure is varied between 20 to 60 bar, initial temperature is varied between 800 to 1200K, and the dilution is varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a spark-ignition engine. The ignition time is taken to be the point where the rate of change of temperature with respect to time is the largest (temperature inflection point criteria).
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
X