Refine Your Search

Topic

Author

Search Results

Journal Article

Synthesis of Efficient Powersplit CVT/IVT System

2014-04-01
2014-01-1726
The target of the work is to find out the algorithm of definition of the ratios of mechanical part of complex powersplit CVT/IVT system with regard to the highest achievable efficiency. The presented synthesis is focused on powersplit systems, which will consist of a CVT part, differential and eventually by-pass gear. The algorithm will be programmed and become an integral part of the program Sungear developed on Czech Technical University in Prague for analyses and synthesis of planetary stepped transmissions and CVT/IVT powersplit systems. The article will mainly present the algorithm of definition of efficient powersplit system. For the search of the efficient powersplit system we assume that the following parameters are given: a Spread and efficiency of used CVT system. b Total spread of the whole powersplit CVT/IVT mechanism. c Optional: Ratios of the used CVT system. d Optional: Ratios of the whole powersplit CVT/IVT system.
Journal Article

Rapid Prototyping Energy Management System for a Single Shaft Parallel Hybrid Electric Vehicle Using Hardware-in-the-Loop Simulation

2013-04-08
2013-01-0155
Energy management is one of the key challenges for the development of Hybrid Electric Vehicle (HEV) due to its complex powertrain structure. Hardware-In-the-Loop (HIL) simulation provides an open software architecture which enables rapid prototyping HEV energy management system. This paper presents the investigation of the energy management system for a single shaft parallel hybrid electric vehicle using dSPACE eDrive HIL system. The parallel hybrid electric vehicle, energy management system, and low-level Electronic Control Unit (ECU) were modeled using dSPACE Automotive Simulation Models and dSPACE blocksets. Vehicle energy management is achieved by a vehicle-level controller called hybrid ECU, which controls vehicle operation mode and torque distribution among Internal Combustion Engine (ICE) and electric motor. The individual powertrain components such as ICE, electric motor, and transmission are controlled by low-level ECUs.
Journal Article

Modeling Cycle-to-Cycle Variations in 0-D/1-D Simulation by Means of Combustion Model Parameter Perturbations based on Statistics of Cycle-Resolved Data

2013-04-08
2013-01-1314
The presented paper deals with a methodology to model cycle-to-cycle variations (CCV) in 0-D/1-D simulation tools. This is achieved by introducing perturbations of combustion model parameters. To enable that, crank angle resolved data of individual cycles (pressure traces) have to be available for a reasonable number of engine cycles. Either experimental data or 3-D CFD results can be applied. In the presented work, experimental data of a single-cylinder research engine were considered while predicted LES 3-D CFD results will be tested in the future. Different engine operating points were selected - both stable ones (low CCV) and unstable ones (high CCV). The proposed methodology consists of two major steps. First, individual cycle data have to be matched with the 0-D/1-D model, i.e., combustion model parameters are varied to achieve the best possible match of pressure traces - an automated optimization approach is applied to achieve that.
Journal Article

Investigation of Key Mechanisms for Liquid Length Fluctuations in Transient Vaporizing Diesel Sprays

2013-04-08
2013-01-1594
Diesel combustion and emissions formation is spray and mixing controlled and understanding spray parameters is key to determining the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, both spray visualization and computational fluid dynamics (CFD) modeling were undertaken to investigate key mechanisms for liquid length fluctuations. For the experimental portion of this study a common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel. Liquid penetration of the spray was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with a 0% oxygen environment. Tests were undertaken at a gas density of 34.8 kg/m₃, 2000 bar injection pressure, and at ambient temperatures of 900, 1100, and 1300 K.
Technical Paper

Optimization of Engine Control Strategies During Transient Processes Combining 1-D and 3-D Approaches

2010-04-12
2010-01-0783
One-dimensional simulation methods for unsteady (transient) engine operations have been developed and published in previous studies. These 1-D methods utilize heat release and emissions results obtained from 3-D CFD simulations which are stored in a data library. The goal of this study is to improve the 1-D methodology by optimizing the control strategies. Also, additional independent parameters are introduced to extend the 3-D data library, while, as in the previous studies, the number of interpolation points for each parameter remains small. The data points for the 3-D simulations are selected in the vicinity of the expected trajectories obtained from the independent parameter changes, as predicted by the transient 1-D simulations. By this approach, the number of time-consuming 3-D simulations is limited to a reasonable amount.
Technical Paper

Methods for Modeling and Code Generation for Custom Lookup Tables

2010-04-12
2010-01-0941
Lookup tables and functions are widely used in real-time embedded automotive applications to conserve scarce processor resources. To minimize the resource utilization, these lookup tables (LUTs) commonly use custom data structures. The lookup function code is optimized to process these custom data structures. The legacy routines for these lookup functions are very efficient and have been in production for many years. These lookup functions and the corresponding data structures are typically used for calibration tables. The third-party calibration tools are specifically tailored to support these custom data structures. These tools assist the calibrators in optimizing the control algorithm performance for the targeted environment for production. Application software typically contains a mix of both automatically generated software and manually developed code. Some of the same calibration tables may be used in both auto generated and hand-code [ 1 ] [ 2 ].
Technical Paper

Modeling of Influence of Biogas Fuel Composition on Parameters of Automotive Engines

2010-04-12
2010-01-0542
This paper deals with the influence of CO, CO₂, N₂, H₂, C₂H₆, C₃H₈ and C₄H₁₀ content in fuel on basic engine integral parameters. The focus is on the influence of biogas fuel composition on engine thermodynamic features. The paper describes the iterative regression method evaluating the influence of individual gas mass fraction and engine operation parameters on cumulative heat release curve of SI engines. The parameters for recalculation of heat release patterns depending on individual gas mass fraction in fuel and operation parameters are derived. The modeled cumulative heat release patterns are converted into burned fuel fraction pattern. The particular outputs are generalized using GT-POWER-based model results.
Technical Paper

A Computational Investigation of Hydrotreated Vegetable Oil Sprays Using RANS and a Modified Version of the RNG k - ε Model in OpenFOAM

2010-04-12
2010-01-0739
Hydrotreated vegetable oil (HVO) is a high-cetane number alternative fuel with the potential of drastic emissions reductions in high-pressure diesel engines. In this study the behavior of HVO sprays is investigated computationally and compared with conventional diesel fuel sprays. The simulations are performed with a modified version of the C++ open source code OpenFOAM using Reynolds-averaged conservation equations for mass, species, momentum and energy. The turbulence has been modeled with a modified version of the RNG k-ε model. In particular, the turbulence interaction between the droplets and the gas has been accounted for by introducing appropriate source terms in the turbulence model equations. The spray simulations reflect the setup of the constant-volume combustion cell from which the experimental data were obtained.
Technical Paper

Recovery of Waste Polystyrene Generated by Lost Foam Technology in the Automotive Industry

2001-03-05
2001-01-0345
In the automotive industry, lost foam casting is a relatively new technology, which is gaining popularity among manufacturers. Lost foam casting is a process in which an expanded polystyrene pattern is formed into the shape of the part to be cast. More complex parts are fabricated by simply gluing several simple patterns together. The pattern is then coated with a refractory material consisting of a mineral mixture and binders. Finally, hot metal is poured into the pattern, evaporating the expanded polystyrene and taking shape of the coating shell. However, the automotive industry has observed that a significant number of these fabricated, coated patterns are damaged, or do not meet specifications prior to casting. These are not reusable and inevitably are landfilled. It is the goal of this project to develop a simple, reliable, and inexpensive technology to recover expanded polystyrene from the glue and coating constituents.
Technical Paper

Wet Versus Dry Turning: A Comparison of Machining Costs, Product Quality, and Aerosol Formation

2001-03-05
2001-01-0343
The use of cutting fluid in machining operations not only poses a health risk to workers but also creates environmental challenges associated with fluid treatment and disposal. In an effort to minimize these concerns and eliminate the costs associated with cutting fluids, e.g., purchase, maintenance, and treatment, dry machining is increasingly being considered as an alternative. This paper is focused on comparing dry and wet machining approaches from several perspectives, including air quality, product quality, and economics. Both experimental and analytical work is presented. Experiments have been performed to determine the effect cutting fluid has on product quality and aerosol generation in the wet and dry turning of gray cast iron. To compare costs in wet and dry turning, a cost model, which includes cutting fluid-related components, has also been established.
Technical Paper

The Effect of Binder Conditions on Draw Depth in Aluminum Panel Forming

2001-03-05
2001-01-1135
In sheet metal forming, metal flow into the die is determined by the restraint imposed by both the blankholder force and the drawbead penetration. This paper describes an experimental investigation in which both advanced binder force and drawbead technologies are used to study their effect on draw depth in the drawing of an AA6111-T4 generic non-symmetric panel. Multipoint binder loading using individual pin force adjustment applied to especially designed binder structures as well as the use of variable blankholder force were investigated in one laboratory in Germany. In another laboratory in the USA, active drawbeads were applied to the drawing of the generic panel. The results of both approaches, which are shown to be successful, are presented and discussed.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

National Science Foundation Workshop on Environmentally Benign Manufacturing for the Transportation Industries

2002-03-04
2002-01-0593
The National Science Foundation recently sponsored a Workshop on Environmentally Benign Manufacturing (EBM) for the Transportation Industries. The objective of the workshop was to determine future directions of research in the EBM area and to construct a roadmap for development of future research programs. While research in the fields of Design for the Environment (DfE) and Life Cycle Analysis (LCA) have focused on the product and product life cycles, an additional focus is needed to find and develop processes with less environmental impact within the manufacturing environment. This workshop explored EBM issues with respect to the enterprise, the products, the processes and the materials.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

Numerical Simulation of Autoignition of Gasoline-Ethanol/Air Mixtures under Different Conditions of Pressure, Temperature, Dilution, and Equivalence Ratio.

2011-04-12
2011-01-0341
A numerical simulation of autoignition of gasoline-ethanol/air mixtures has been performed using the closed homogeneous reactor model in CHEMKIN® to compute the dependence of autoignition time with ethanol concentration, pressure, temperature, dilution, and equivalence ratio. A semi-detailed validated chemical kinetic model with 142 species and 672 reactions for a gasoline surrogate fuel with ethanol has been used. The pure components in the surrogate fuel consisted of n-heptane, isooctane and toluene. The ethanol volume fraction is varied between 0 to 85%, initial pressure is varied between 20 to 60 bar, initial temperature is varied between 800 to 1200K, and the dilution is varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a spark-ignition engine. The ignition time is taken to be the point where the rate of change of temperature with respect to time is the largest (temperature inflection point criteria).
Technical Paper

Numerical Simulations for Spray Characterization of Uneven Multiple Jet-to-Jet Impingement Injectors

2016-04-05
2016-01-0840
Spray structure has a significant effect on emissions and performance of an internal combustion engine. The main objective of this study is to investigate spray structures based on four different multiple jet impingement injectors. These four different multiple jet-to-jet impingement injectors include 1). 4-hole injector (Case 1), which has symmetric inwardly opening nozzles; 2). 5-1-hole (Case 2); 3). 6-2-hole (Case 3); and 4). 7-3-hole (Case 4) which corresponding to 1, 2, 3 numbers of adjacent holes blocked in a 5-hole, 6-hole, and 7-hole symmetrical drill pattern, respectively. All these configurations are basically 4-holes but with different post collision spray structure. Computational Fluid Dynamics (CFD) work of these sprays has been performed using an Eulerian-Lagrangian modelling approach.
Technical Paper

Analysis of Scavenged Pre-Chamber for Light Duty Truck Gas Engine

2017-09-04
2017-24-0095
An ongoing research and development activities on the scavenged pre-chamber ignition system for an automotive natural gas fueled engine is presented in this paper. The experimental works have been performed in engine laboratory at steady state conditions on a gas engine with 102 mm bore and 120 mm stroke, converted to a single cylinder engine. The in-house designed scavenged pre-chamber is equipped with a spark plug, fuel supply and a miniature pressure sensor for detailed combustion diagnostics. The engine was operated at constant speed, fully open throttle valve and four different fueling modes with or without spark discharge. A partly motored mode allowed direct evaluation of the pre-chamber heat release. The experimental data acquired in this research served as a validation data for the numerical simulations. The performed tests of prototypes and calculations have recently been expanded to include 3-D flow calculations in the Ansys Fluent software.
Technical Paper

Calibration and Results of a Radial Turbine 1-D Model with Distributed Parameters

2011-04-12
2011-01-1146
The physical 1-D model of a radial turbine consists in a set of gas ducts featuring total pressure and/or temperature changes and losses. This model has been developed using the basic modules of generalized 1-D manifold solver. The tools for it were presented at SAE 2008 and 2009 World Congresses. The model published before is amended by a semi-empiric mechanical loss and windage loss modules. The instantaneous power of a turbine is integrated along the rotating impeller channel using Euler turbine theorem, which respects the local unsteadiness of mass flow rate along the channel. The main aim of the current contribution is to demonstrate the use of measured turbine maps for calibration of unsteady turbine model for different lay-outs of turbine blade cascades. It is important for VG turbines for the optimal matching to different engine speeds and loads requirements.
Technical Paper

Development of Design Assistance System and Its Application for Engine Concept Modeling

2011-06-09
2011-37-0030
This article presents results of the Design Assistance System (DASY) development and examples of its application for engine concept modeling. The software (DASY) for creating and maintaining knowledge database was developed. This software is targeted to simplify and speed up the concept design process. The targets were met by providing the high level of flexibility along with a simple user interface. Two examples that show interaction of DASY with computer-aided design (CAD) software are presented. The DASY creates a template for conserving the knowledge acquired during engine design in the past. It provides hints for the future design tasks by offering a data of similar engines, based on experiments and simulations at different levels of complexity and profoundness.
Technical Paper

LES Simulation of Direct Injection SI-Engine In-Cylinder Flow

2012-04-16
2012-01-0138
The present paper deals with the application of the LES approach to in-cylinder flow modeling. The main target is to study cycle-to-cycle variability (CCV) using 3D-CFD simulation. The engine model is based on a spark-ignited single-cylinder research engine. The results presented in this paper cover the motored regime aiming at analysis of the cycle-resolved local flow properties at the spark plug close to firing top dead center. The results presented in this paper suggest that the LES approach adopted in the present study is working well and that it predicts CCV and that the qualitative trends are in-line with established knowledge of internal combustion engine (ICE) in-cylinder flow. The results are evaluated from a statistical point of view based on calculations of many consecutive cycles (at least 10).
X