Refine Your Search

Topic

Search Results

Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Technical Paper

Climate control system improvements for better cabin environmental conditions and reduction of fuel consumption

2007-11-28
2007-01-2673
Since the beginning the world automotive industry looks for new technologies to improve the passengers' life inside vehicles, to optimize the consumption of fuel and to minimize the emission of pollutant. In the present study improvements in the vehicle acclimatization system for better cabin environmental conditions and reduction of fuel consumption were accomplished. The study included improvements in the air chamber and in the refrigeration cycle and was accomplished in a off-road vehicle model, with a bi-fuel engine of 1600 cm3, endowed with an acclimatization system with capacity of 1 TR (usual in this type of automobile). The tests of the acclimatization system performance were executed initially with the conventional system of air conditioning, without any modification (reference system). Along the development of the work modifications were introduced for the determination of the impact of these modifications in the system performance.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers

2011-05-17
2011-01-1644
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

2012-04-16
2012-01-1328
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Technical Paper

Investigation of Nozzle Clearance Effects on a Radial Turbine: Aerodynamic Performance and Forced Response

2013-04-08
2013-01-0918
Variable nozzle turbine (VNT) technology has become a popular technology for diesel engine application. To pivot the nozzle vane and adjust the turbine operating condition, nozzle clearances are inevitable on both the hub and shroud side of turbine housing. Leakage flow formed inside the nozzle clearance leads to extra flow loss and makes the nozzle exit flow less uniform, thus further affects downstream aerodynamic performance of the rotor. As the leakage mixing with nozzle wake flow, the process is highly unsteady, which increases the fluctuation amplitude of transient load on the rotating turbine wheels. In present paper, firstly steady CFD analysis of a turbocharger turbine was performed at different nozzle openings. Then unsteady simulation of the turbine was carried out to investigate the interaction between the leakage flow through nozzle clearance and the main flow. Nozzle clearance's effect on turbine performance was investigated.
Technical Paper

Exhaust Flow Separation in a Two Stroke Engine

1996-02-01
960744
The two stroke direct injected gasoline engine is in part characterized by low temperature exhaust flow, particularly at light loads, due to the fresh air scavenging of the combustion chamber during the exhaust process. This study investigated the possibility of separating the exhaust flow into two regimes: 1) high temperature flow of the combustion products, and 2) low temperature flow from the fresh air scavenging process. Separation of the exhaust flow was accomplished by a mechanical device placed in the exhaust stream. In this way, emissions from the exhaust could be handled by two different catalysts and/or processes, each optimized for different temperature ranges and flow compositions. The first portion of this study involved validation of a computer model, using experimental data from a single cylinder engine with a stationary exhaust port and splitter.
Technical Paper

Evaluation of the Effect of Fuel Composition and Gasoline Additives on Combustion Chamber Deposits

1996-10-01
962012
Since 1992 some vehicles have experienced engine knock or rapping noise during cold starts that is caused by combustion chamber deposit interference (CCDI) To better understand the CCDI phenomena, engine dynamometer studies were conducted. Results show that base gasoline composition and detergent additive compositions have significant effects on combustion chamber deposit (CCD) build-up In addition to engine testing, thermogravimetric analysis (TGA) was used to determine a correlation between unwashed gum and CCD levels
Technical Paper

Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-injected Spark-Ignition Engine

1996-05-01
961192
Multidimensional computations were carried out to simulate the in-cylinder fuel/air mixing process of a direct-injection spark-ignition engine using a modified version of the KIVA-3 code. A hollow cone spray was modeled using a Lagrangian stochastic approach with an empirical initial atomization treatment which is based on experimental data. Improved Spalding-type evaporation and drag models were used to calculate drop vaporization and drop dynamic drag. Spray/wall impingement hydrodynamics was accounted for by using a phenomenological model. Intake flows were computed using a simple approach in which a prescribed velocity profile is specified at the two intake valve openings. This allowed three intake flow patterns, namely, swirl, tumble and non-tumble, to be considered. It was shown that fuel vaporization was completed at the end of compression stroke with early injection timing under the chosen engine operating conditions.
Technical Paper

An Electrohydraulic Gas Sampling Valve with Application to Hydrocarbon Emissions Studies

1980-02-01
800045
Design and development of an electrohydraulically actuated gas sampling valve is presented for use in auto engine combustion studies. The valve was developed with particular emphasis on sampling within the vicinity of the wall quench layer, requiring minimum leakage rates to avoid sample contamination and flush seating of the valve-stem to valve-seat to avoid perturbations of the wall layer. Response in the range of 0.4 to 1.0 milliseconds is attainable for variable valve lifts measured between 0.01 to 0.30 mm while using a net sealing force of approximately 750N. Gas leakage rates ranged from 0.05% to 1% of the sample mass flow rate when sampling from estimated distances from the wall of 0.3 mm to 0.03 mm, respectively, at a cylinder pressure of 10 bar. The gas sampling valve is presently coupled to a gas chromatograph to measure concentrations of major species components.
Technical Paper

Combustion Chamber Effects on Burn Rates in a High Swirl Spark Ignition Engine

1983-02-01
830335
Experimental measurements of burn rates have been carried out in a single cylinder homogeneous charge engine. Three different combustion chambers were investigated (75 % and 60 % squish bowl-in-piston chambers and a disk chamber) using a cylinder head with a swirl producing intake port and near central spark location. Data were obtained with each combustion chamber as a function of spark timing, EGR, and load at 1500 RPM. The combustion rate is strongly influenced by chamber shape. The 10-90 % burn durations of the 75 % and 60 % squish chambers are respectively about 40 % and 60 % that of the disk chamber. Chamber configuration had less effect on 0-10 % burn duration. The disk had about 25 % longer 0-10 % burn time than the bowl-in-piston chambers. Modifications to the GESIM model enabled good overall agreement between predictions and experimental data, a rather severe test of the model because the coupling of fluid mechanics, combustion and chamber geometry must be properly modeled.
Technical Paper

A Photographic Study of the Combustion of Low Cetane Fuels in a Diesel Engine Aided with Spark Assist

1986-03-01
860066
An experimental investigation of the ignition and combustion characteristics of two low cetane fuels in a spark assisted Diesel engine is described. A three cylinder Diesel engine was modified for single cylinder operation and fitted with a spark plug located in the periphery of the spray plume. Optical observations of ignition and combustion were obtained with high speed photography. Optical access was provided by a quartz piston crown and extended head arrangement. The low cetane fuels, a light end, low viscosity fuel and a heavy end, high viscosity fuel which were blended to bracket No. 2 Diesel fuel on the distillation curve, demonstrated extended operation in the modified Diesel engine. Qualitative and quantitative experimental observations of ignition delay, pressure rise, heat release, spray penetration and geometery were compared and evaluated against theoretical predictions.
Technical Paper

An Infrared Technique for Measuring Cycle-Resolved Transient Combustion-Chamber Surface Temperatures in a Fired Engine

1986-03-01
860240
An optical technique for measuring transient combustion chamber surface temperatures in a fired engine has been developed. The spectral region from 3.6 to 4.0 microns was found to be suitable for making optical measurements through the methane-air flame. The experimental apparatus was capable of making simultaneous time-resolved measurements of infrared gas absorption, gas emission and surface radiation during a single engine cycle. The effects of engine operating conditions on gas absorption and gas emission were investigated. Measurements of “simulated” deposits at temperatures ranging from 569 K to 944 K indicated that the technique was accurate within 7 K at the higher temperatures.
X