Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts

2009-04-20
2009-01-0903
Selective Catalytic Reduction (SCR) catalysts have been designed to reduce NOx with the assistance of an ammonia-based reductant. Diesel Particulate Filters (DPF) have been designed to trap and eventually oxidize particulate matter (PM). Combining the SCR function within the wall of a high porosity particulate filter substrate has the potential to reduce the overall complexity of the aftertreatment system while maintaining the required NOx and PM performance. The concept, termed Selective Catalytic Reduction Filter (SCRF) was studied using a synthetic gas bench to determine the NOx conversion robustness from soot, coke, and hydrocarbon deposition. Soot deposition, coke derived from propylene exposure, and coke derived from diesel fuel exposure negatively affected the NOx conversion. The type of soot and/or coke responsible for the inhibited NOx conversion did not contribute to the SCRF backpressure.
Journal Article

Impact and Prevention of Ultra-Low Contamination of Platinum Group Metals on SCR Catalysts Due to DOC Design

2009-04-20
2009-01-0627
Diesel aftertreatment systems configured with a diesel oxidation catalyst (DOC) upstream of an urea selective catalytic reduction (SCR) catalyst run the risk of precious metal contamination. During active diesel particulate filter (DPF) regeneration events, the DOC bed temperature can reach up to 850°C. Under these conditions, precious metal (especially Pt) can be volatized and then deposited on a downstream SCR catalyst. In this paper, the impact of ultra-low contamination of platinum group metals (PGM) on the SCR catalyst was studied. A method based on precious metal volatilization of a Pt-rich DOC at 850°C and under lean gas conditions was employed to contaminate downstream FeSCR and CuSCR formulations. The contamination resulted in poor NOx conversion (via NOx remake) and excessive N2O formation. The precious metal volatilization method was employed to screen various Pt/Pd based DOCs to avoid contamination of the downstream FeSCR.
X