Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Understanding How Rain Affects Semantic Segmentation Algorithm Performance

2020-04-14
2020-01-0092
Research interests in autonomous driving have increased significantly in recent years. Several methods are being suggested for performance optimization of autonomous vehicles. However, weather conditions such as rain, snow, and fog may hinder the performance of autonomous algorithms. It is therefore of great importance to study how the performance/efficiency of the underlying scene understanding algorithms vary with such adverse scenarios. Semantic segmentation is one of the most widely used scene-understanding techniques applied to autonomous driving. In this work, we study the performance degradation of several semantic segmentation algorithms caused by rain for off-road driving scenes. Given the limited availability of datasets for real-world off-road driving scenarios that include rain, we utilize two types of synthetic datasets.
Technical Paper

Multi-Objective Design Optimization Using a Damage Material Model Applied to Light Weighting a Formula SAE Car Suspension Component

2009-04-20
2009-01-0348
The Mississippi State University Formula SAE race car upright was optimized using radial basis function metamodels and an internal state variable (ISV) plasticity damage material model. The weight reduction of the upright was part of a goal to reduce the weight of the vehicle by 25 percent. Using an optimization routine provided an upright design that is lighter that helps to improve vehicle fuel economy, acceleration, and handling. Finite element (FE) models of the upright were produced using quadratic tetrahedral elements. Using tetrahedral elements provided a quick way to produce the multiple FE models of the upright required for the multi-objective optimization. A design of experiments was used to determine how many simulations were required for the optimization. The loads for the simulations included braking, acceleration, and corning loads seen by the car under track conditions.
Technical Paper

Causes of Weight Reduction Effects of Material Substitution on Constant Stiffness Components

2002-03-04
2002-01-1291
The substitution of lightweight materials, such as aluminum or magnesium alloys, to produce lightweight car bodies, has been the subject of intensive research in resent years. It has been established that an aluminum body is lighter than a steel body for constant stiffness. The causes of this weight reduction have not been established. In particular, since the specific modulus (modulus of elasticity/density) of steel, aluminum and magnesium are nearly identical, there is no easy answer for their ability to reduce weight. In this paper, it is shown that there are stress concentrations in thin walled structures, which are dependent on the thickness of the material. These stress concentrations appear in joints and other parts with complex geometry and loading conditions. For example, the flanges on a curved beam in flexure have an effective (load bearing) width, which increases as the material is thickened.
Technical Paper

A Study in Driver Performance: Alternative Human-Vehicle Interface for Brake Actuation

2006-04-03
2006-01-1060
This study examines the performance and subject acceptance level of a hand-operated brake actuator. Using a fixed-base vehicle simulator, data for driver reaction time, stopping time, distance, deceleration, customer acceptance and mental workload were collected. Data for three prototype hand-operated brake actuators and traditional foot-operated brake were compared. An additional test, designed to evaluate anthropometrics, sensitivity, and comfort was performed during training. A user preference survey to determine handbrake acceptance was given to subjects after completing the driving test in the simulator. In certain trials, participants were given the choice of handbrake or footbrake for an unexpected stop condition. When placed into an unexpected braking situation, subjects showed faster brake-application times for operating the hand-operated brake, indicating potential for reduced braking distance.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Design and Optimization of a P4 mHEV Powertrain

2022-03-29
2022-01-0669
The EcoCAR Mobility Challenge (EMC) is the latest edition of the Advanced Vehicle Technology Competition (AVTC) series sponsored by the US Department of Energy. This competition challenges 11 North American universities to redesign a stock 2019 Chevrolet Blazer into an energy-efficient, SAE level 2-autonomous mild hybrid electric vehicle (mHEV) for use in the Mobility as a Service (MaaS) market. The Mississippi State University (MSU) team designed a P4 electric powertrain with an 85kW (113.99 HP) permanent magnet synchronous machine (PMSM) powered by a custom 5.4 kWh lithium-ion energy storage system. To maximize energy efficiency, Model Based Design concepts were leveraged to optimize the overall gear ratio for the P4 system. To accommodate this optimized ratio in the stock vehicle, a custom offset gearbox was designed that links the PMSM to the rear drive module.
Technical Paper

Design and Assessment of an Antibacklash Single Roller Enveloping Hourglass Worm Gear

2019-04-02
2019-01-1071
A theoretical and experimental analysis is conducted to study the influences of key design parameters on the backlash of the roller enveloping hourglass worm gear. Two equations, the gear engagement equation and the tooth profile equation have been derived and represented in terms of four key parameters arising from the backlash of the worm gear by applying the gear meshing theory. Based on the derived equations, an efficient approach for reducing or eliminating the backlash of such a novel warm gear is developed. Specifically, the influences of center distance, roller radius, transmission ratio, and the radius of base circle on the contact curves and the tooth profile have been systematically investigated through numerical analysis, modeling and simulation. Next, a roller enveloping hourglass worm gear is manufactured and used for assessing the efficiency of the developed method in reducing and/or eliminating the backlash.
X