Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Understanding How Rain Affects Semantic Segmentation Algorithm Performance

2020-04-14
2020-01-0092
Research interests in autonomous driving have increased significantly in recent years. Several methods are being suggested for performance optimization of autonomous vehicles. However, weather conditions such as rain, snow, and fog may hinder the performance of autonomous algorithms. It is therefore of great importance to study how the performance/efficiency of the underlying scene understanding algorithms vary with such adverse scenarios. Semantic segmentation is one of the most widely used scene-understanding techniques applied to autonomous driving. In this work, we study the performance degradation of several semantic segmentation algorithms caused by rain for off-road driving scenes. Given the limited availability of datasets for real-world off-road driving scenarios that include rain, we utilize two types of synthetic datasets.
Technical Paper

Multi-Objective Design Optimization Using a Damage Material Model Applied to Light Weighting a Formula SAE Car Suspension Component

2009-04-20
2009-01-0348
The Mississippi State University Formula SAE race car upright was optimized using radial basis function metamodels and an internal state variable (ISV) plasticity damage material model. The weight reduction of the upright was part of a goal to reduce the weight of the vehicle by 25 percent. Using an optimization routine provided an upright design that is lighter that helps to improve vehicle fuel economy, acceleration, and handling. Finite element (FE) models of the upright were produced using quadratic tetrahedral elements. Using tetrahedral elements provided a quick way to produce the multiple FE models of the upright required for the multi-objective optimization. A design of experiments was used to determine how many simulations were required for the optimization. The loads for the simulations included braking, acceleration, and corning loads seen by the car under track conditions.
Technical Paper

Developing a Model Predictive Control-Based Algorithm for Energy Management System of the Catenary-Based Electric Truck

2016-10-17
2016-01-2359
Although the cost-saving and good environmental impacts are the benefits that make Electric Vehicles (EVs) popular, these advantages are significantly influenced by the cost of battery replacement over the vehicle lifetime. After several charging and discharging cycles, the battery is subjected to energy and power degradation which affects the performance and efficiency of the vehicle. In addition to battery replacement cost, the electricity cost being paid by drivers is another key factor in selecting the EVs. An Energy Management System (EMS) with Model Predictive Control-based (MPC) algorithm is presented for a specific case of heavy-duty EV. Such EV draws its energy from the grid via catenary in addition to the on-board battery. Dynamic model of the vehicle will be defined by State Space Equations (SSE).
Technical Paper

A Study in Driver Performance: Alternative Human-Vehicle Interface for Brake Actuation

2006-04-03
2006-01-1060
This study examines the performance and subject acceptance level of a hand-operated brake actuator. Using a fixed-base vehicle simulator, data for driver reaction time, stopping time, distance, deceleration, customer acceptance and mental workload were collected. Data for three prototype hand-operated brake actuators and traditional foot-operated brake were compared. An additional test, designed to evaluate anthropometrics, sensitivity, and comfort was performed during training. A user preference survey to determine handbrake acceptance was given to subjects after completing the driving test in the simulator. In certain trials, participants were given the choice of handbrake or footbrake for an unexpected stop condition. When placed into an unexpected braking situation, subjects showed faster brake-application times for operating the hand-operated brake, indicating potential for reduced braking distance.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Model Based Design and Verification of Automated Driving Features Using XIL Simulation Platforms

2022-03-29
2022-01-0103
The latest edition of the US Department of Energy's (DOE) Advanced Vehicle Technology Competition (AVTC) series is the EcoCAR Mobility Challenge (EMC). In the third year of the EMC, the Mississippi State University (MSU) team developed and tested a perception system and a longitudinal controller to achieve SAE level 2 autonomy. Our team leveraged the model-based design approach to iterate between developing software components and executing tests in multiple environments in the loop (XIL) to verify that design requirements are met. This workflow allowed us to detect and resolve issues early in the development process. The perception system is composed of a sensor fusion and tracking algorithm. It relies on detections from a front facing camera and radar to generate tracks for a leading vehicle. The tracks from the perception system are used by a model predictive controller (MPC) to maintain a safe distance to the leading vehicle.
Technical Paper

Design and Optimization of a P4 mHEV Powertrain

2022-03-29
2022-01-0669
The EcoCAR Mobility Challenge (EMC) is the latest edition of the Advanced Vehicle Technology Competition (AVTC) series sponsored by the US Department of Energy. This competition challenges 11 North American universities to redesign a stock 2019 Chevrolet Blazer into an energy-efficient, SAE level 2-autonomous mild hybrid electric vehicle (mHEV) for use in the Mobility as a Service (MaaS) market. The Mississippi State University (MSU) team designed a P4 electric powertrain with an 85kW (113.99 HP) permanent magnet synchronous machine (PMSM) powered by a custom 5.4 kWh lithium-ion energy storage system. To maximize energy efficiency, Model Based Design concepts were leveraged to optimize the overall gear ratio for the P4 system. To accommodate this optimized ratio in the stock vehicle, a custom offset gearbox was designed that links the PMSM to the rear drive module.
Technical Paper

Enhanced Simulation Techniques for the Automatic Evaluation of Vehicle Designs

2016-04-05
2016-01-0315
The ability to quickly and automatically evaluate vehicle designs is a critical tool in an efficient vehicle design process. This paper presents techniques for vehicle parameter estimation using automatic intelligent simulations. These techniques enable the efficient and automatic evaluation of many important aspects of vehicle designs. The effectiveness of this approach is demonstrated by using vehicle tests that are commonly performed on military ground vehicles. Our simulation techniques are able to determine the relevant vehicle performance characteristics in a much more efficient manner than could be done previously. This is done automatically, once the user has specified the type of test to be performed. A terrain sample is automatically generated and the vehicle’s behavior on each terrain instance is evaluated until the specified test conditions are met.
Technical Paper

An Automatic Emergency Braking System for Collision Avoidance Assist of Multi-Trailer Vehicle Based on Model Prediction Control

2021-04-06
2021-01-0117
The autonomous collision avoidance problem for multi-trailer vehicle maneuvering is investigated in this paper. Different from conventional vehicle systems that contain one single moving part or multi-parts that can be considered as one rigid body, the interconnection between the tractor and each trailer, and interactions between trailers in the multi-trailer system introduce a high dimensional and highly complex dynamic system for the controller design. The external disturbance and parametric uncertainties further increase the difficulty in system identification and state space formulation. To implement a real time control system for various scenarios where the locations and states of the obstacles are not known beforehand, a supervisory algorithm is designed to convert the control problem to a discrete event system. The model predictive control (MPC) using limited lookahead policy is employed in the proposed algorithm.
Technical Paper

Experimental and Numerical Analysis of an Outward Opening Injector Pintle Dynamics

2023-10-24
2023-01-1810
Direct injection strategies have been successfully used on spark ignited internal combustion engines for improving performance and reducing emissions. Among the different technologies available, outward opening injectors seem to have found their place in renewable applications running on gaseous fuels, including natural gas or hydrogen, as well as in a few specific liquid fuel applications. In order to understand the key operating principles of these devices, their limitations and the resulting sprays, it is necessary to accurately describe the pintle dynamics. The pintle’s relative position with respect to the injector body defines the internal flow geometry and therefore the injection rates and spray characteristics. In this paper both numerical and experimental investigations of the dynamics of an outward opening injector pintle have been carried out.
X