Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of a Pilot Scale Apparatus for Control of Solid Waste Using Low Temperature Oxidation

2007-07-09
2007-01-3135
In February 2004 NASA released “The Vision for Space Exploration.” The important goals outlined in this document include extending human presence in the solar system culminating in the exploration of Mars. Unprocessed waste poses a biological hazard to crew health and morale. The waste processing methods currently under consideration include incineration, microbial oxidation, pyrolysis and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this project is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. In the Phase I project, TDA Research, Inc. demonstrated the potential of a low temperature oxidation process using ozone. In the current Phase II project, TDA and NASA Ames Research Center are developing a pilot scale low temperature ozone oxidation system.
Technical Paper

Incineration of Inedible Biomass in a Regenerative Life Support System - Update of Development Activities at ARC

2001-07-09
2001-01-2344
Of the many competing technologies for resource recovery from solid wastes for long duration manned missions such as a lunar or Mars base, incineration technology is one of the most promising and certainly the most well developed in a terrestrial sense. Various factors are involved in the design of an optimum fluidized bed incinerator for inedible biomass. The factors include variability of moisture in the biomass, the ash content, and the amount of fuel nitrogen in the biomass. The crop mixture in the waste will vary; consequently the nature of the waste, the nitrogen content, and the biomass heating values will vary as well. Variation in feed will result in variation in the amount of contaminants such as nitrogen oxides that are produced in the combustion part of the incinerator. The incinerator must be robust enough to handle this variability. Research at NASA Ames Research Center using the fluidized bed incinerator has yielded valuable data on system parameters and variables.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

Control of Effluent Gases from Solid Waste Processing Using Impregnated Carbon Nanotubes

2005-07-11
2005-01-2946
One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored.
X