Refine Your Search

Topic

Search Results

Journal Article

Testing of a Plastic Melt Waste Compactor Designed for Human Space Exploration Missions

2009-07-12
2009-01-2363
Significant progress has been made at NASA Ames Research Center in the development of a heat melt compaction device called the Plastic Melt Waste Compactor (PMWC). The PMWC was designed to process wet and dry wastes generated on human space exploration missions. The wastes have a plastic content typically greater than twenty percent. The PMWC removes the water from the waste, reduces the volume, and encapsulates it by melting the plastic constituent of the waste. The PMWC is capable of large volume reductions. The final product is compacted waste disk that is easy to manage and requires minimal crew handling. This paper describes the results of tests conducted using the PMWC with a wet and dry waste composite that was representative of the waste types expected to be encountered on long duration human space exploration missions.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

An Evaluation of Potential Mars Transit Vehicle Water Treatment Systems

1998-07-13
981538
This paper compares four potential water treatment systems in the context of their applicability to a Mars transit vehicle mission. The systems selected for evaluation are the International Space Station system, a JSC bioreactor-based system, the vapor phase catalytic ammonia removal system, and the direct osmotic concentration system. All systems are evaluated on the basis of their applicability for use in the context of the Mars Reference Mission. Each system is evaluated on the basis of mass equivalency. The results of this analysis indicate that there is effectively no difference between the International Space Station system and the JSC bioreactor configurations. However, the vapor phase catalytic ammonia removal and the direct osmotic concentration systems offer a significantly lower mass equivalency (approximately 1/7 the ISS or bioreactor systems).
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Development Status of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization

2008-06-29
2008-01-2095
The “low power-CO2 removal (LPCOR) system” is an advanced air revitalization system that is under development at NASA Ames Research Center. The LPCOR utilizes the fundamental design features of the ‘four bed molecular sieve’ (4BMS) CO2 removal technology of the International Space Station (ISS). LPCOR improves power efficiency by replacing the desiccant beds of the 4BMS with a membrane dryer and a state-of-the-art, structured adsorbent device that collectively require 25% of the thermal energy required by the 4BMS desiccant beds for regeneration. Compared to the 4BMS technology, it has the added functionality to deliver pure, compressed CO2 for oxygen recovery. The CO2 removal and recovery functions are performed in a two-stage adsorption compressor. CO2 is removed from the cabin air and partially compressed in the first stage. The second stage performs further compression and delivers the compressed CO2 to a reduction unit such as a Sabatier reactor for oxygen recovery.
Technical Paper

Heat Transfer Characteristics of the Concentric Disk inside the WFRD Evaporator for the VPCAR Water Recovery System

2009-07-12
2009-01-2487
We consider the heat transfer characteristics of an ideal concentric disk used in the Wiped-Film Rotating-Disk (WFRD) evaporator for the Vapor Phase Catalytic Ammonia Removal (VPCAR) water recovery system. A mathematical model is derived to predict the radial temperature distribution and its average over the surface of the disk as a function of system parameters. The model shows self-similarity of the temperature distribution and the existence of a dimensionless parameter S (ratio of heat flux to convection) that can be used as a criterion to optimize the thermal characteristics of the disk in order to approach uniform surface temperature. Comparison of the model to experimental data using global (infrared imager) and local (resistive temperature devices) measurements shows that agreement with the model depends on the ambient condition denoted by the local heat transfer coefficient.
Technical Paper

Plastic Waste Processing and Volume Reduction for Resource Recovery and Storage in Space

2003-07-07
2003-01-2369
This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions. The heat melt compactor can handle wastes with a significant plastic composition and minimize crew interaction. The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such as plastic food packaging and trash are compacted manually and wrapped in duct taped “footballs” by the astronauts. Much of the waste is simply loaded into the empty Russian Progress spacecraft that is used to bring supplies to ISS. The progress spacecraft and its contents are intentionally burned up in the earth's atmosphere during reentry. This manual method of trash management on ISS is a wasteful use of crew time and does not transition well to far term missions.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
Technical Paper

Lyophilization for Water Recovery

2001-07-09
2001-01-2348
An energy-efficient lyophilization technique is being developed to recover water from highly contaminated spacecraft waste streams. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain water. To operate in microgravity, and to minimize power consumption, thermoelectric heat pumps can be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer is described and used to generate energy use and processing rate estimates.
Technical Paper

The Development of the Wiped-Film Rotating-Disk Evaporator for the Reclamation of Water at Microgravity

2002-07-15
2002-01-2397
This project is a Phase III SBIR contract between NASA and Water Reuse Technology (WRT). It covers the redesign, modification, and construction of the Wiped-Film Rotating-Disk (WFRD) evaporator for use in microgravity and its integration into a Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a water processor technology for long duration space exploration applications. The system is designed as an engineering development unit specifically aimed at being integrated into NASA Johnson Space Center's Bioregenerative Planetary Life Support Test Complex (BIO-Plex). The WFRD evaporator and the compressor are being designed and built by WRT. The balance of the VPCAR system and the integrated package are being designed and built by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) under a subcontract with WRT. This paper provides a description of the VPCAR technology and the advances that are being incorporated into the unit.
Technical Paper

The General Purpose Work Station, A Spacious Microgravity Workbench

1992-07-01
921394
The General Purpose Work Station (GPWS) is a laboratory multi-use facility, as demonstrated during the Spacelab Life Sciences 1 (SLS-1) flight. The unit provided particulate containment under varying conditions, served as an effective work space for manipulating live animals, e.g., rats, served as a containment facility for fixatives, and was proposed for use to conduct in-flight maintenance during connector pin repair. The cabinet has a front door large enough to allow installation of a full-size microscope in-flight and is outfitted with a side window to allow delivery of items into the cabinet without exposure to the spacelab atmosphere. Additional support subsystems include inside cabinet mounting, surgical glove fine manipulations capability, and alternating or direct current power supply for experiment equipment, as will be demonstrated during Spacelab J.
Technical Paper

Development of Water Treatment Systems for Use on NASA Crew Exploration Vehicle (CEV) and Lunar Surface Access Module (LSAM)

2006-07-17
2006-01-2012
NASA is currently developing two new human rated launch systems. They are the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). Both of these spacecraft will require new life support systems to support the crew. These life support systems can also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80% of the mass required to keep a person alive. As a result recycling water offers a high return on investment. Recycling water can also increase mission safety by providing an emergency supply of drinking water. This paper evaluates the potential benefits of two wastewater treatment technologies that have been designed to reduce the mass of the CEV and LSAM missions. For a 3 day CEV mission to the International Space Station (ISS) this approach could reduce the mass required to provide drinking water by 65% when compared to stored water. For an 18 day Lunar mission a mass savings of 70% is possible.
Technical Paper

Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2006-07-17
2006-01-2131
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Technical Paper

The CELSS Antarctic Analog Project: A Validation of CELSS Methodologies at the South Pole Station

1993-07-01
932245
The CELSS Antarctic Analog Project (CAAP) is a joint NSF and NASA project tor the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. As a joint endeavor, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate technology selection, system design and methods development required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau.
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

Vapor Phase Catalytic Ammonia Reduction

1994-06-01
941398
This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon™ soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor.
Technical Paper

Development of an Advanced Life Support Testbed at the Amundsen-Scott South Pole Station

1994-06-01
941610
This paper presents a description of the Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) and its functionality as a pilot study for the design of a future Lunar-Mars habitat. A description of the prototype development testbed, located at Ames Research, is provided as well as an analysis of the key design parameters. The CAAP program is tasked with the development of a life support testbed at the South Pole. This facility will include food production, waste processing, and in situ energy production capabilities. The testbed will provide NASA with a remote facility located in an extremely harsh environment which has been designed to provide a useful analog to the deployment of a future Lunar-Martian habitat. NASA's program goals are the operational testing of life support technologies and the conduct of scientific studies to facilitate future technology selection and system design.
Technical Paper

Growth of Super-Dwarf Wheat on the Russian Space Station MIR

1996-07-01
961392
During 1995, we tested instruments and attempted a seed-to-seed experiment with Super-Dwarf wheat in the Russian Space Station Mir. Utah instrumentation included four IR gas analyzers (CO2 and H2O vapor, calculate photosynthesis, respiration, and transpiration) and sensors for air and leaf (IR) temperatures, O2, pressure, and substrate moisture (16 probes). Shortly after planting on August 14, three of six fluorescent lamp sets failed; another failed later. Plastic bags, necessary to measure gas exchange, were removed. Hence, gases were measured only in the cabin atmosphere. Other failures led to manual watering, control of lights, and data transmission. The 57 plants were sampled five times plus final harvest at 90 d. Samples and some equipment (including hard drives) were returned to earth on STS-74 (Nov. 20). Plants were disoriented and completely vegetative. Maintaining substrate moisture was challenging, but the moisture probes functioned well.
Technical Paper

Lyophilization for Water Recovery III, System Design

2005-07-11
2005-01-3084
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Technical Paper

The Development of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Engineering Development Unit

2004-07-19
2004-01-2495
This paper presents the results of a program to develop the next generation Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a spacecraft water recycling system designed by NASA and constructed by Water Reuse Technology Inc. The technology has been identified by NASA to be the next generation water recycling system [1]. It is designed specifically for a Mars transit vehicle mission. This paper provides a description of the process and an evaluation of the performance of the new system. The equivalent system mass (ESM) is calculated and compared to the existing state-of-the art. A description of the contracting mechanism used to construct the new system is also provided.
X