Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Propulsion Simulation Test Technique for V/STOL Configurations

1983-10-03
831427
Ames Research Center is developing the technology for turbine-powered jet engine simulators so that airframe/propulsion system interactions on V/STOL fighter aircraft and other highly integrated configurations can be studied. This paper describes the status of the compact multimission aircraft propulsion simulator (CMAPS) technology. Three CMAPS units have accumulated a total of 340 hr during approximately 1-1/2 yr of static and wind-tunnel testing. A wind-tunnel test of a twin-engine CMAPS-equipped close-coupled canard-wing V/STOL model configuration with nonaxisymmetric nozzles was recently completed. During this test approximately 140 total hours were logged on two CMAPS units, indicating that the rotating machinery is reliable and that the CMAPS and associated control system provide a usable test tool. However, additional development is required to correct a drive manifold O-ring problem that limits the engine-pressure-ratio (EPR) to approximately 3.5.
Technical Paper

Wet Oxidation of a Spacecraft Model Waste

1985-07-01
851372
Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.
Technical Paper

Spacelab Life Sciences-2 ARC Payload-An Overview

1988-07-01
881027
The Spacelab Life Sciences 2 mission (SLS-2) is the second in a planned series of dedicated Life Sciences missions utilizing the European Space Agency-provided Spacelab module. The mission, tentatively scheduled for a mid-1992 launch, will comprise a total of eighteen experiments encompassing both human and animal research. Eight of the eighteen experiments will involve animal life sciences research and will be managed by the Space Life Sciences Payloads Office (SLSPO) at NASA's Ames Research Center (ARC). The ARC payload complement of eight experiments will include six which use rodents and two which use primates (squirrel monkeys). SLS-2 provides an opportunity for even more extensive investigations into the effects of weightlessness upon the anatomy and physiology of rodent and primate systems.
Technical Paper

Takeoff Predictions for Powered-Lift Aircraft

1986-10-01
861630
Takeoff predictions for powered lift short takeoff (STO) aircraft have been added to NASA AMES Research Center's aircraft synthesis (ACSYNT) code. The new computer code predicts the aircraft engine and nozzle settings required to achieve the minimum takeoff roll. As a test case, it predicted takeoff ground rolls and nozzle settings for the YAV-8B Harrier that were close to the actual values. Analysis of takeoff performance for an ejector-augmentor design and a vectoring-nozzle design indicated that ground roll can be decreased, for either configuration, by horizontally moving the rear thrust vector closer to the center of gravity, by increasing the vertical position of the ram drag-vector, or by moving the rear thrust vector farther below the center of gravity.
Technical Paper

Development of a Water Recovery Subsystem Based on Vapor Phase Catalytic Ammonia Removal (VPCAR)

1986-07-14
860985
An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine was designed, fabricated and tested. It was fabricated from commercially available components without emphasis on weight, volume and power requirement optimization. Optimizing these parameters would make this process competitive with other spacecraft water recovery systems. Unlike other phase change systems, this process is based on the catalytic oxidation at elevated temperatures of ammonia and volatile hydrocarbons to innocuous products; therefore, no urine pretreatment is required. The testing program consisted of parametric tests, one month of daily tests, and a continuous run of 165 hours. The recovered water is low in ammonia, hydrocarbons and conductivity and requires only adjustment of its pH to meet drinking water standards.
X