Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Test of SOI 555 Timer with High Temperature Packaging

2008-11-11
2008-01-2882
The thick oxide layer of silicon-on-insulator (SOI) devices significantly reduces the junction leakage current at elevated temperatures compared to similar Si devices, resulting in an elevated maximum operating temperature. The maximum operating temperature, specified by manufacturers, of commercial SOI devices/circuits with conventional packaging is usually 225°C. It is important to understand the performance and de-ratings of these SOI circuits at temperatures above 225°C without the temperature limit imposed by commercial packaging technology. This work tested a low frequency square-wave oscillator based on an SOI 555 Timer with a special high temperature ceramic packaging technology from room temperature to 375°C. The timer die was attached to a 96% aluminum oxide substrate with high temperature durable gold (Au) thick-film metallization, and interconnected with Au wires.
Journal Article

Measurement of Smoke Particle Size under Low-Gravity Conditions

2008-06-29
2008-01-2089
Smoke detection experiments were conducted in the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) during Expedition 15 in an experiment entitled Smoke Aerosol Measurement Experiment (SAME). The preliminary results from these experiments are presented. In order to simulate detection of a prefire overheated-material event, samples of five different materials were heated to temperatures below the ignition point. The smoke generation conditions were controlled to provide repeatable sample surface temperatures and air flow conditions. The smoke properties were measured using particulate aerosol diagnostics that measure different moments of the size distribution. These statistics were combined to determine the count mean diameter which can be used to describe the overall smoke distribution.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Review of Role of Icing Feathers in Ice Accretion Formation

2007-09-24
2007-01-3294
This paper presents a review of our current experimental and theoretical understanding of icing feathers and the role that they play in the formation of ice accretions. It covers the following areas: a short review of past research work related to icing feathers; a discussion of the physical characteristics and terminology used in describing icing feathers; the presence of feathers on ice accretions formed in unswept airfoils, especially at SLD conditions; the role that icing feathers play in the formation of ice accretion shapes on swept wings; the formation of icing feathers from roughness elements; theoretical considerations regarding feather formation, feather interaction to form complex icing structures, the role of film dynamics in the formation of roughness elements and the formation of feathers. Hypotheses related to feather formation and feather growth are discussed.
Technical Paper

Development of Icing Condition Remote Sensing Systems and their Implications for Future Flight Operations

2003-06-16
2003-01-2096
NASA and the FAA are funding the development of ground-based remote sensing systems specifically designed to detect and quantify the icing environment aloft. The goal of the NASA activity is to develop a relatively low cost stand-alone system that can provide practical icing information to the flight community. The goal of the FAA activity is to develop more advanced systems that can identify supercooled large drop (SLD) as well as general icing conditions and be integrated into the existing weather information infrastructure. Both activities utilize combinations of sensing technologies including radar, radiometry, and lidar, along with Internet-available external information such as numerical weather model output where it is found to be useful. In all cases the measured data of environment parameters will need to be converted into a measure of icing hazard before it will be of value to the flying community.
Technical Paper

Heat Transfer Characteristics of the Concentric Disk inside the WFRD Evaporator for the VPCAR Water Recovery System

2009-07-12
2009-01-2487
We consider the heat transfer characteristics of an ideal concentric disk used in the Wiped-Film Rotating-Disk (WFRD) evaporator for the Vapor Phase Catalytic Ammonia Removal (VPCAR) water recovery system. A mathematical model is derived to predict the radial temperature distribution and its average over the surface of the disk as a function of system parameters. The model shows self-similarity of the temperature distribution and the existence of a dimensionless parameter S (ratio of heat flux to convection) that can be used as a criterion to optimize the thermal characteristics of the disk in order to approach uniform surface temperature. Comparison of the model to experimental data using global (infrared imager) and local (resistive temperature devices) measurements shows that agreement with the model depends on the ambient condition denoted by the local heat transfer coefficient.
Technical Paper

Smoke Particle Sizes in Low-Gravity and Implications for Spacecraft Smoke Detector Design

2009-07-12
2009-01-2468
This paper presents results from a smoke detection experiment entitled Smoke Aerosol Measurement Experiment (SAME) which was conducted in the Microgravity Science Glovebox on the International Space Station (ISS) during Expedition 15. Five different materials representative of those found in spacecraft were pyrolyzed at temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow conditions. The sample materials were Teflon®, Kapton®, cellulose, silicone rubber and dibutylphthalate. The transport time from the smoke source to the detector was simulated by holding the smoke in an aging chamber for times ranging from 10 to1800 seconds. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis.
Technical Paper

Lunar Dust Cloud Characterization in a Gravitational Settling Chamber Experiencing Zero, Lunar, Earth and 1.8-g Levels

2009-07-12
2009-01-2357
In order to study dust propagation and mitigation techniques, an inertial separation and gravitational settling experiment rig was constructed and used for experimental work in reduced gravity aircraft flights. The first experimental objective was to test dust filtration by a cyclone separator in lunar gravity. The second objective was to characterize dust flow and settling in lunar gravity in order to devise more comprehensive dust mitigation strategies. A settling channel provided a flow length over which particles settled out of the air flow stream. The experimental data provides particle quantity and size distribution, and a means of verifying numerical predictions.
Technical Paper

Update On SLD Engineering Tools Development

2003-06-16
2003-01-2127
The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions.
Technical Paper

An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues

2003-06-16
2003-01-2135
This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen.
Technical Paper

Detection of Smoke from Microgravity Fires

2005-07-11
2005-01-2930
The history and current status of spacecraft smoke detection is discussed including a review of the state of understanding of the effect of gravity on the resultant smoke particle size. The results from a spacecraft experiment (Comparative Soot Diagnostics (CSD)) which measured microgravity smoke particle sizes are presented. Five different materials were tested producing smokes with different properties including solid aerosol smokes and liquid droplets aerosol smokes. The particulate size distribution for the solid particulate smokes increased substantially in microgravity and the results suggested a corresponding increase for the smokes consisting of a liquid aerosol. A planned follow on experiment that will resolve the issues raised by CSD is presented. Early results from this effort have provided the first measurements of the ambient aerosol environment on the ISS (International Space Station) and suggest that the ISS has very low ambient particle levels.
Technical Paper

Scalability of GlennICE in a Parallel Environment

2023-06-15
2023-01-1482
The Glenn Icing Computational Environment (GlennICE) is a computational tool designed to calculate ice growth on complex three-dimensional geometries using the input from a user-supplied computational fluid dynamics (CFD) solution for the geometry of interest. The most significant developments in the advancement of GlennICE have been investigating the convergence of the collection efficiency, efficiently finding trajectories, and improving the refinement methodology. Such developments have increased the efficiency of GlennICE for practical engineering application. With the increasing demand for applying GlennICE for more memory-intensive problems, the scalability of GlennICE has yet to be investigated. This paper is aimed at presenting a method to benchmark the scalability of GlennICE utilizing a relevant engineering problem within a parallel environment.
Technical Paper

Demonstration of Initial GlennICE Relative Frame Capability: Axial-Flow Propeller

2023-06-15
2023-01-1457
Modifications have been implemented in the GlennICE software to accommodate a non-inertial reference frame. GlennICE accepts a flow solution from an external flow solver. It then introduces particles and tracks them through the flow field in a Lagrangian manner. Centrifugal and Coriolis terms were added to the GlennICE software to account for relative frame simulations. The objective of the present paper is twofold. First, to check that the new terms are implemented correctly and that the code still behaves as expected with respect to convergence. And second, to provide some initial insight into an upcoming propeller experiment in the NASA Icing Research Tunnel. The paper presents a description of the code modifications. In addition, results are presented for two operating conditions, and three particle sizes. Each case was simulated with four different grid densities to assess grid dependence.
Technical Paper

Additional Large-Drop Ice Accretion Test Results for a Large Scale Swept Wing Section from January 2022

2023-06-15
2023-01-1382
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant.
Technical Paper

Simulation of Ice Particle Breakup and Ingestion into the Honeywell Uncertified Research Engine (HURE)

2019-06-10
2019-01-1965
Numerical solutions have been generated which simulate flow inside an aircraft engine flying at altitude through an ice crystal cloud. The geometry used for this study is the Honeywell Uncertified Research Engine (HURE) which was recently tested in the NASA Propulsion Systems Laboratory (PSL) in January 2018. The simulations were carried out at predicted operating points with a potential risk of ice accretion. The extent of the simulation is from upstream of the engine inlet to downstream past the strut in the core and bypass. The flow solution is produced using GlennHT, a NASA in-house code. A mixing plane approximation is used upstream and downstream of the fan. The use of the mixing plane allows for steady state solutions in the relative frame. The flow solution is then passed on to LEWICE3D for particle trajectory, impact and breakup prediction. The LEWICE3D code also uses a mixing plane approximation at the boundaries upstream and downstream of the fan.
Technical Paper

Optical Evaluation of a Refractive Secondary Concentrator

1999-08-02
1999-01-2679
Refractive secondary concentrators are being considered for solar thermal applications because of their ability to achieve maximum efficiency through the use of total internal reflection for the concentration and distribution of solar energy. A prototype refractive secondary concentrator was built based on ray tracing analysis to demonstrate this collection and distribution concept. The design included a conical secondary concentrator and a faceted extractor. The objective of this effort was to functionally evaluate the performance of the refractive secondary concentrator/extractor prototype and to compare the results with modeling. Most of the light was found to exit the refractive secondary concentrator through the extractor. In addition, the degree of attenuation encountered by the light as it passed through the refractive secondary concentrator was of interest.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
X