Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor

2003-06-23
2003-01-2271
The National Renewable Energy Laboratory (NREL) collaborated with Millennium Cell and DaimlerChrysler to study heat and water management in a sodium borohydride (NaBH4) storage/processor used to supply hydrogen to a fuel cell in an automotive application. Knowledge of heat and water flows in this system is necessary to maximize the storage concentration of NaBH4, which increases vehicle range. This work helps evaluate the NaBH4 system's potential to meet the FreedomCAR program technical target of 6 wt% hydrogen for hydrogen storage technologies. This paper also illustrates the advantages of integrating the NaBH4 hydrogen processor with the fuel cell.
Technical Paper

A Modular Battery Management System for HEVs

2002-06-03
2002-01-1918
Proper electric and thermal management of an HEV battery pack, consisting of many modules of cells, is imperative. During operation, voltage and temperature differences in the modules/cells can lead to electrical imbalances from module to module and decrease pack performance by as much as 25%. An active battery management system (BMS) is a must to monitor, control, and balance the pack. The University of Toledo, with funding from the U.S. Department of Energy and in collaboration with DaimlerChrysler and the National Renewable Energy Laboratory has developed a modular battery management system for HEVs. This modular unit is a 2nd generation system, as compared to a previous 1st generation centralized system. This 2nd generation prototype can balance a battery pack based on cell-to-cell measurements and active equalization. The system was designed to work with several battery types, including lithium ion, NiMH, or lead acid.
Technical Paper

Achieving SULEV30 Regulation Requirement with Three-Way Catalyst on High Porosity Substrate while Reducing Platinum Group Metal Loading

2022-03-29
2022-01-0543
Fleet average SULEV30 emissions over FTP-75 must be met under full implementation of US Tier 3/LEV III emission regulation in 2025. The majority of SULEV30 certified 2021 model year vehicles are equipped with ≤ 2L displacement engines and some models adopt hybrid powertrain systems. Pickup trucks account for > 20% of passenger vehicles in the US. They could represent a quick route to meet fleet average SULEV30 targets. The newest pickup truck models are typically ULEV50 or ULEV70 certified. To reach SULEV30 or lower emission category, total tailpipe emissions must be reduced by more than 40%. Improvement of cold start emission is essential because over 70% of regulated emission is emitted during the first 60 seconds of a drive cycle with current engine and aftertreatment technology. High porosity (HP) ceramic substrate is designed to reduce thermal mass and time required to reach three-way catalyst (TWC) active temperature compared to conventional ceramic substrates.
Journal Article

Development of a Ceramic EHC

2022-03-29
2022-01-0536
In recent years, electrically heated catalysts (EHCs) have been developed to achieve lower emissions. In several EHC heating methods, the direct heating method, which an electric current is applied directly to the catalyst substrate, can easily activate the catalyst before engine start-up. The research results reported on the use of the direct heating EHC to achieve significant exhaust gas purification during cold start-up [1]. From the perspective of catalyst loading, ceramics is considered to be a better material for the substrate than metal due to the difference in coefficient of thermal expansion between the catalyst and the substrate, but the EHC made of ceramics has difficulties such as controllability of the current distribution, durability and reliability of the connection between the substrate and the electrodes.
X