Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Extension of Lean and Diluted Combustion Stability Limits by Using Repetitive Pulse Discharges

2010-04-12
2010-01-0173
A newly developed small-sized IES (inductive energy storage) circuit with a semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems in the previous papers. Experiments were conducted using constant volume chamber for CH₄ and C₃H₈-air mixtures. The ignition system using repetitive nanosecond pulse discharges was found to improve the inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses for CH₄ and C₃H₈-air mixtures under various conditions. The mechanisms for improving the inflammability were discussed and the effectiveness of IES circuit under EGR condition was also verified.
Technical Paper

Development of Vehicle Exhaust Flow Measurement Calibration Device

2004-03-08
2004-01-1436
Vehicle exhaust flow is difficult to measure accurately and with high precision due to the highly transient nature of the cyclic events which are dependent on engine combustion parameters, varying exhaust gas compositions, pulsation effects, temperature and pressure. Bag mini-diluter (BMD) is becoming one of the few technologies chosen for SULEV and PZEV exhaust emission measurement and certification. A central part of the BMD system is an accurate and reliable exhaust flow measurement which is essential for proportional bag fill. A new device has been developed to accurately and reliably calibrate exhaust flow measurement equipments such as the E-Flow. The calibration device uses two different size laminar flow elements (LFE), a 40 CFM (1.13 m3/min) LFE for low end calibration and a 400 CFM (11.32 m3/min) LFE for higher flows. A blower is used to push flow through a main flow path, which then divides into two flow pathways, one for each of the two LFE's.
Technical Paper

Engine Internal Dynamic Force Identification and the Combination with Engine Structural and Vibro-Acoustic Transfer Information

2001-04-30
2001-01-1596
The vibration-generating mechanisms inside an engine are highly non-linear (combustion, valve operation, hydraulic bearing behavior, etc.). However, the engine structure, under the influence of these vibration-generating mechanisms, responds in a highly linear way. For the development and optimization of the engine structure for noise and vibration it is beneficial to use fast and ‘simple’ linear models, like linear FE-models, measured modal models or measured FRF-models. All these models allow a qualitative assessment of variants without excitation information. But, for true optimization, internal excitation spectra are needed in order to avoid that effort is spent to optimize non-critical system properties. Unfortunately, these internal excitation spectra are difficult to measure. Direct measurement of combustion pressure is still feasible, but crank-bearing forces, piston guidance forces etc. can only be identified indirectly.
Technical Paper

Influencing Parameters and Error Sources During Indication on Internal Combustion Engines

1992-02-01
920233
The smaller the potential for improvement of the internal combustion engine becomes, the higher is the need for the precise indication of the cylinder pressure. Through optimum selection and maintenance of the instruments, measuring errors can be kept to a minimum. However, the skilled engineer must still be able to interpret accurately results, too, that may not be 100 % correct. The influencing parameters and error sources gained from experience as well as their individual consequences are discussed in this paper with the object of avoiding errors and interpreting unavoidable errors correctly.
Technical Paper

Combustion Pressure Based Engine Management System

2000-03-06
2000-01-0928
Future emission regulations and customer needs require revolutionary new approaches to engine management systems. In the EC part-funded AENEAS program the partners Ricardo, Kistler and DaimlerChrysler formed a consortium to investigate the application of a new combustion pressure sensor concept and innovative algorithms for engine management systems. This paper describes the general scope and the basic concepts of the system.
Technical Paper

A Phenomenological Combustion Model for Heat Release Rate Prediction in High-Speed DI Diesel Engines with Common Rail Injection

2000-10-16
2000-01-2933
This paper presents a phenomenological single-zone combustion model which meets the particular requirements of high speed DI diesel engines with common rail injection. Therefore the model takes into account the freely selectable pilot and main injection and is strongly focusing on result parameters like combustion noise or NO-emission which are affected by this split injection. The premixed combustion, the mixing-controlled combustion and the ignition delay are key parts of the model. The model was developed and tested on more than 200 samples from three different engine types of DaimlerChrysler passenger car engines equipped with common rail injection. A user-friendly parameterization and a short computing time was achieved thanks to the simple structure of the model.
X