Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Framework for Unmanned Aircraft Systems Safety Risk Management

2011-10-18
2011-01-2688
Although Unmanned Aircraft Systems (UAS) have now for some time been used in segregated airspace where separation from other air traffic can be assured, potential users have interests to deploy UAS in non segregated airspace. Recent technological and operational improvements give reason to believe that UAS safety and performance capabilities are maturing. But the skies can only really open up to UAS when there is an agreed upon UAS safety policy with commonly accepted UAS Safety Risk Management (SRM) processes enabling to show that the risks related to UAS operations in all the different airspace classes can be adequately controlled. The overall objective is to develop a UAS SRM framework, supporting regulators and applicants through provision of detailed guidelines for each SRM step to be conducted, including 1) system description, 2) hazard identification, 3) risk analysis, 4) risk assessment, 5) risk treatment.
Technical Paper

Development of a Safety Assessment Methodology for the Risk of Collision of an Unmanned Aircraft System with the Ground

2011-10-18
2011-01-2684
Recent technological developments and increased utilization of Unmanned Aircraft Systems (UAS) have widened their application from military operations to also civil and commercial operations. UAS are most beneficial when they can share the whole airspace with manned aircraft. However, integration of UAS into non-segregated airspace is only viable if UAS operations are proved to be safe enough. The concern is that UAS operations could pose a safety problem for other aircraft and persons or property on the ground [19]. The objective of this paper is to develop and apply a safety risk analysis methodology for the risk of collision of an Unmanned Aircraft System with the ground. Such method could support regulators with the setting of UAS safety requirements. It may also be used by applicants (UAS operators and manufacturers) for identification of UAS related hazards, causal factors, and accident scenarios.
Technical Paper

The NACRE Innovative Evaluation Platform and its Navigation & Control Strategies

2011-10-18
2011-01-2632
Within the European Integrated Project NACRE (New Aircraft Concept REsearch) led by Airbus, a team of research centers and universities developed a multidisciplinary flying testbed called IEP (Innovative Evaluation Platform). Under the form of a dynamically scaled model of a future civil transport aircraft, its role is to assist engineers during the assessment of flight dynamics characteristics and noise reduction capabilities. After the feasibility study during which potential scientific and economical benefits of such new test facility have been identified, the team decided to design and manufacture the IEP. Because of the dual aspect of the system (it is a flying unmanned aerial vehicle and a test facility), an extensive requirement analysis has been carried out by the partners in order to identify the necessary operational modes and their associated navigation and control strategies.
X