Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

A Study on NOx Emission Characteristics When Using Biomass-derived Diesel Alternative Fuels

2012-04-16
2012-01-1316
Utilization of biofuels to vehicles is attracting attention globally from viewpoints of preventing global warming, effectively utilizing the resources, and achieving the local invigoration. Representative examples are bioethanol and biodiesel. This study highlights biodiesel and hydrotreated vegetable oil (HVO) in view of reducing greenhouse gas emission from heavy-duty diesel vehicles. Biodiesel is FAME obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. As already reported, FAME has fuel properties different from conventional diesel fuel, resulting in about 10% increase in NOx emission [1],[2],[3]. Suppression of such increase in the NOx emission during operating with biodiesel requires adjustment of the combustion control technology, such as fuel injection control and EGR, to the use of biodiesel.
Technical Paper

Study on Burning Velocity of LPG Fuel in a Constant Volume Combustion Chamber and an SI Engine

2010-04-12
2010-01-0614
Compared with petroleum fuel, liquefied petroleum gas (LPG) demonstrates advantages in low CO₂ emission. This is because of propane (C₃H₈), n-butane (n-C₄H₁₀) and i-butane (i-C₄H₁₀), which are the main components of LPG, making H/C ratio higher. In addition, LPG is suitable for high efficient operation of a spark ignition (SI) engine due to its higher research octane number (RON). Because of these advantages, that is, diversity of energy source and reduction of CO₂, in the past several years, LPG vehicles have widely been used as the alternate gasoline vehicles all over the world. Consequently, it is absolutely essential for the performance increase in LPG vehicles to comprehend combustion characteristics of LPG. In this study, the differences of laminar burning velocity between C₃H₈, n-C4H10, i-C₄H₁₀ and regular gasoline were evaluated experimentally with the use of a constant volume combustion chamber (CVCC).
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

2010-10-25
2010-01-2277
Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

Analysis of the Effect of Eco-driving with Early Shift-up on Real-world Emission

2010-10-25
2010-01-2279
For the reduction of greenhouse gas emission in the transportation sector, various countermeasures against CO₂ emission have been taken. The eco-driving has been paid attention because of its immediate effect on the CO₂ reduction. Eco-driving is defined as a driving method with various driving techniques to save fuel economy. The eco-driving method has been promoted to the common drivers as well as the drivers of carriers. Additionally, there are many researches about improvement of fuel efficiency and CO₂ reduction. However, the eco-driving will have the reduction effect of CO₂ emission, the influence of the eco-driving on air pollutant emission such as NOx is not yet clear. In this study, the effect of the eco-driving on real-world emission has been analyzed using the diesel freight vehicle with the on-board measurement system.
Technical Paper

Evaluation of Real- World Emissions from Heavy-Duty Diesel Vehicle Fueled with FAME, HVO and BTL using PEMS

2014-10-13
2014-01-2823
Widespread use of biofuels for automobiles would greatly reduce CO2 emissions and increase resource recycling, contributing to global environmental conservation. In fact, activities for expanding the production and utilization of biofuels are already proceeding throughout the world. For diesel vehicles, generally, fatty acid methyl ester (FAME) made from vegetable oils is used as a biodiesel. In recent years, hydrotreated vegetable oil (HVO) has also become increasingly popular. In addition, biomass to liquid (BTL) fuel, which can be made from any kinds of biomass by gasification and Fischer-Tropsch process, is expected to be commercialized in the future. On the other hand, emission regulations in each country have been tightened year by year. In accordance with this, diesel engines have complied with the regulations with advanced technologies such as common-rail fuel injection system, high pressure turbocharger, EGR and aftertreatment system.
X