Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Advanced Electrical Signature Analysis to Track the Health of Aircraft Electrical Generators

2012-10-22
2012-01-2234
Electrical and mechanical failures (such as bearing, winding and rotating-diode failures) combine to cause premature failures of the generators, which become a flight safety issue forcing the crew to land as soon as practical. Currently, diagnostic / prognostic technologies are not implemented for aircraft generators where repairs are time-consuming and costly. This paper presents the development of feature extraction and diagnostic algorithms to 1) differentiate between these failure modes and normal aircraft operational modes; and 2) determine the degree of damage of a generator. Electrical signature analysis (ESA) based time-domain features were developed to distinguish between healthy and degraded generators while taking into account their operating conditions. Frequency-domain based ESA techniques are used to identify the degraded components within the generators.
Technical Paper

An Acoustic-Based Wiring Diagnostic System for Aircraft

2009-11-10
2009-01-3192
An onboard Acoustic Wiring Diagnostic System to monitor the health of aircraft wiring is under development by Innovative Dynamics Inc. The AWDS incorporates passive acoustic sensors to monitor wire chafing. The system operates continuously in-flight so that intermittent wiring fault conditions can be detected as they happen. Trend analysis data can be logged to enable pro-active maintenance prior to catastrophic failure. A key advantage of the in-situ system is to perform the inspection without removing or disconnecting the wiring. Acoustic signatures of representative aircraft wiring have been characterized under simulated damage conditions. Flight ready hardware and software have been developed and flight testing is underway on an H-53 helicopter. This paper will present the wire diagnostic approach, the AWDS flight instrumentation, and some representative lab test results.
Technical Paper

Large Displacement Stability by Design for Robust Aircraft Electric Power Systems

2012-10-22
2012-01-2197
More electric aircraft (MEA) architectures have increased in complexity leading to a demand for evaluating the dynamic stability of their advanced electrical power systems (EPS). The system interactions found therein are amplified due to the increasingly integrated subsystems and on-demand power requirements of the EPS. Specifically, dynamic electrical loads with high peak-to-average power ratings as well as regenerative power capabilities have created a major challenge in design, control, and integration of the EPS and its components. Therefore, there exists a need to develop a theoretical framework that is feasible and useful for the specification and analysis of the stability of complex, multi-source, multi-load, reconfigurable EPS applicable to modern architectures. This paper will review linear and nonlinear system stability analysis approaches applicable to a scalable representative EPS architecture with a focus on system stability evaluation during large-displacement events.
Technical Paper

Developing Analysis for Large Displacement Stability for Aircraft Electrical Power Systems

2014-09-16
2014-01-2115
Future more electric aircraft (MEA) architectures that improve electrical power system's (EPS's) source and load utilization will require advance stability analysis capabilities. Systems are becoming more complex with bidirectional flows from power regeneration, multiple sources per channel and higher peak to average power ratios. Unknown load profiles with large transients complicate common stability analysis techniques. Advancements in analysis are critical for providing useful feedback to the system integrator and designers of multi-source, multi-load power systems. Overall, a framework for evaluating stability with large displacement events has been developed. Within this framework, voltage transient bounds are obtained by identifying the worst case load profile. The results can be used by system designers or integrators to provide specifications or limits to suppliers. Subsystem suppliers can test and evaluate their design prior to integration and hardware development.
Technical Paper

Power Quality Analysis Framework for AC and DC Electrical Systems

2014-09-16
2014-01-2209
Analyzing and maintaining power quality in an electrical power system (EPS) is essential to ensure that power generation, distribution, and loads function as expected within their designated operating regimes. Standards such as MIL-STD-704 and associated documents provide the framework for power quality metrics that need to be satisfied under varying operating conditions. However, analyzing these power quality metrics within a fully integrated EPS based solely on measurements of relevant signals is a different challenge that requires a separate framework containing rules for data acquisition, metric calculations, and applicability of metrics in certain operating conditions/modes. Many EPS employed throughout industry and government feature various alternating-current (ac) power systems.
X