Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Impact of Fuel Properties on Diesel Low Temperature Combustion

2011-04-12
2011-01-0329
Extensive empirical work indicates that exhaust gas recirculation (EGR) is effective to lower the flame temperature and thus the oxides of nitrogen (NOx) production in-cylinder in diesel engines. Soot emissions are reduced in-cylinder by improved fuel/air mixing. As engine load increases, higher levels of intake boost and fuel injection pressure are required to suppress soot production. The high EGR and improved fuel/air mixing is then critical to enable low temperature combustion (LTC) processes. The paper explores the properties of the Fuels for Advanced Combustion Engines (FACE) Diesel, which are statistically designed to examine fuel effects, on a 0.75L single cylinder engine across the full range of load, spanning up to 15 bar IMEP. The lower cetane number (CN) of the diesel fuel improved the mixing process by prolonging the ignition delay and the mixing duration leading to substantial reduction of soot at low to medium loads, improving the trade-off between NOx and soot.
Journal Article

Combined Analysis of Cooling Airflow and Aerodynamic Drag for a Class 8 Tractor Trailer Combination

2011-09-13
2011-01-2288
Long haul tractor design in the future will be challenged by freight efficiency standards and emission legislations. Along with any improvements in aerodynamics, this will also require additional cooling capacity to handle the increased heat rejection from next generation engines, waste heat recovery and exhaust gas recirculation systems. Fan engagement will also have to be minimized under highway conditions to maximize fuel economy. These seemingly contradictory requirements will require design optimization via analysis techniques capable of predicting both the aerodynamic drag and engine cooling airflow accurately. This study builds on previous work [1] using a Lattice Boltzmann based computational method on a Volvo VNL tractor trailer combination. Simulation results are compared to tests conducted at National Research Council (NRC) Canada's wind tunnel.
Journal Article

Engine Technologies for Clean and High Efficiency Heavy Duty Engines

2012-09-24
2012-01-1976
Diesel engine manufacturers have faced stringent emission regulations for oxides of nitrogen and particulate emissions for the last two decades. The emission challenges have been met with a host of technologies such as turbocharging, exhaust gas recirculation, high- pressure common rail fuel injection systems, diesel aftertreatment devices, and electronic engine controls. The next challenge for diesel engine manufacturers is fuel-economy regulations starting in 2014. As a prelude to this effort the department of energy (DOE) has funded the Supertruck project which intends to demonstrate 50% brake-thermal efficiency on the dynamometer while meeting US 2010 emission norms. In order to simultaneously meet the emission and engine efficiency goals in the cost effective manner engine manufacturer have adopted a systems approach, since individual fuel saving technologies can actually work against each other if fuel economy is not approached from a total vehicle perspective.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

Application of the SRM Engine Suite over the Entire Load-Speed Operation of a U.S. EPA Tier 4 Capable IC Engine

2016-04-05
2016-01-0571
Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
Technical Paper

Ignition Control of Gasoline-Diesel Dual Fuel Combustion

2012-09-24
2012-01-1972
The use of gasoline fuels in compression ignition engines, with or without diesel pilots, has shown encouraging progress in engine efficiency and emissions. The dual fuel combustion of gasoline-diesel offers the flexibility of modulating the cylinder charge reactivity, but an accurate and reliable control over the ignition in the dual fuel applications is more challenging than in classical engines. In this work, the gasoline-diesel dual fuel operation is investigated on a single cylinder research engine. The effects of the intake boost, exhaust gas recirculation (EGR) rates, diesel/gasoline ratio, and diesel injection timing are studied in regard to the ignition control. The results indicate that at low load, a diesel pilot can improve the cylinder charge reactivity and reduce emissions of incomplete combustion products.
X