Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

Study of Pre-chamber Jet Combustion Behavior using a Small Two-stroke Optically Accessible Engine

2022-01-09
2022-32-0076
A small 2-stroke engine can be an effective power source for an electric generator mounted on a series hybrid electric vehicle. In recent years, a technology referred to as pre-chamber jet combustion has attracted attention as a means of enhancing thermal efficiency by improving mixture ignitability. In this study, experiments were conducted to investigate differences in combustion behavior between the application of spark-ignited (SI) combustion and pre-chamber jet combustion to a small, two-stroke engine. The experimental equipment used was a two-stroke, single-cylinder, optically accessible engine with a displacement of 63.3 cm3. Differences between conventional SI combustion and pre-chamber jet combustion were examined by means of in-cylinder pressure analysis, in-cylinder combustion visualization and image processing software. The diameter of the connecting orifice of the pre-chamber was varied between two types.
Technical Paper

Analysis of the Effects of a Higher Compression Ratio on HCCI Combustion Characteristics using In-cylinder Visualization and Spectroscopic Measurement

2012-10-23
2012-32-0078
Homogenous Charge Compression Ignition (HCCI) combustion experiments were conducted in this study using a single-cylinder test engine fitted with a sapphire observation window to facilitate visualization of the entire cylinder bore area. In addition to in-cylinder visualization of combustion, spectroscopic measurements were made of light emission and absorption in the combustion chamber to investigate autoignition behavior in detail. Engine firing experiments were conducted to visualize HCCI combustion over a wide range of compression ratios from 12:1 to 22:1. The results showed that increasing the compression ratio advanced the ignition timing and increased the maximum pressure rise rate, making it necessary to moderate combustion. It was also found that autoignition can be induced even in a mixture lean enough to cause misfiring by raising the intake air temperature so as to advance the overall combustion process.
Technical Paper

Effects of Steering System Characteristics on Control Performance from the Viewpoint of Steer-by-Wire System Design

1999-03-01
1999-01-0821
This paper deals with the steering system with conventional round steering-wheel from the view point of Steer-by-Wire system design. Steering gear ratio and control force characteristics are selected as interface variables of the steering system. The concept of ideal steering gear ratio which is derived on the basis of mapping of steering wheel angle and vehicle path angle is proposed to determine steering gear ratio. Simulator experiments are conducted to investigate the effects of interface variables on system and driver’s control performance. Validity of proposed ideal steering gear ratio would be confirmed. Candidates for objective task performance measure to define desirable control force characteristics would be determined from the test results.
Technical Paper

Influence of Autoignition and Pressure Wave Behavior on Knock Intensity Based on Multipoint Pressure Measurement and In-Cylinder Visualization of the End Gas

2018-10-30
2018-32-0001
In this study, the effect of autoignition behavior in the unburned end-gas region on pressure wave formation and knock intensity was investigated. A single-cylinder gasoline engine capable of high-speed observation of the end gas was used in the experiments. Visualization in the combustion chamber and spectroscopic measurement of light absorption by the end gas were carried out to analyze autoignition behavior in the unburned end-gas portion and the reaction history before autoignition. The process of autoignition and pressure wave growth was investigated by analyzing multipoint pressure histories. As a result, it was found that knocking intensity increases through interaction between autoignition and pressure waves.
Technical Paper

Laser Breakdown-Assisted Long-Distance Discharge Ignition

2015-09-01
2015-01-1897
We developed a novel ignition method called laser breakdown-assisted long-distance discharge ignition (LBALDI) that combines laser breakdown with a discharge to realize lean combustion. The creation of laser breakdown plasma between electrodes for discharge enables discharges over longer distances than those of conventional sparkplug as inferred from laser-triggered lightning or laser-triggered gas switches. This method should help realize volumetric ignition through the creation of a long-distance discharge. Experiments on the fundamental discharge and ignition of methane/air mixtures were conducted. The optimum incident time of the laser prior to the application of a high voltage was found to reduce the sparkover voltage and markedly reduce the voltage required by LBALDI under pressurized air conditions. In the ignition experiment, LBALDI showed the fastest heat release rate at the lean flammable limit.
Technical Paper

The Influence of High Voltage Electrical Field on the Flame Propagation

2005-10-12
2005-32-0074
The purpose of this study is to elucidate the development process of hot kernel generated by the laser induced breakdown and to clarify the relationship between corona discharge application and flame propagation. The mixture can be ignited by the laser induced breakdown. Nd:YAG laser is used for the ignition and laser light is optically focused on the central part of combustion chamber by a plano convex lens. The hot kernel is observed in the absence of combustion and is rapidly developed into the laser incidence side. The homogeneous propane-air mixture is used and six equivalence ratios between 0.7 and 1.5 are tested. For generating the positive corona discharge in the combustion chamber, a non-uniform electric field is applied by the needle to plane gap. In a lean mixture, the whole flame front shifts to downward from the breakdown point and, in the rich mixture region, the combustion is strongly enhanced.
Technical Paper

A Study of Autoignition Behavior and Knock Intensity in a SI Engine under Different Engine Speed by Using In-Cylinder Visualization

2017-11-05
2017-32-0050
Internal combustion engines have been required to achieve even higher efficiency in recent years in order to address environmental concerns. However, knock induced by abnormal combustion in spark-ignition engines has impeded efforts to attain higher efficiency. Knock characteristics during abnormal combustion were investigated in this study by in-cylinder visualization and spectroscopic measurements using a four-stroke air-cooled single-cylinder engine. The results revealed that knock intensity and the manner in which the autoignited flame propagated in the end gas differed depending on the engine speed.
X