Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The influence that the disclosure of idling noise exerts on HRV and respiratory frequency

2000-06-12
2000-05-0329
The sense of a human being is expressed in a word always with the sensuous evaluation to idling noise. However, due to the sense of the human being is very complicated basically and be including delicate elements, there is a limit to express it in a word. Also, idling noise might be giving a stress to our body, without feeling it. Then, several studies have been made on physiological information receive the response of a human being objectively, tried to evaluate the load of a body. Electrocardiogram (ECG) and respiratory curve were measured to examine the influence that the disclosure of idling noise exerts on the autonomic nervous system function in this study. Heart rate variability (HRV) was obtained from ECG and respiratory frequency was obtained from respiratory curve in the analysis. Seven subjects were adult males who were healthy hearing. We investigated the result with considering the differences by 4 kinds of noise and 2 kinds of sound pressure.
Technical Paper

Influence of the Head Shape Variation on Brain Damage under Impact

2005-06-14
2005-01-2738
The influence of the head shape on intracranial responses under impact was investigated by using Finite Element Method. Head shape models of 52 young adult male Japanese were analyzed by Multi Dimensional Scaling (MDS), and a 2 dimensional distribution map of head shapes was obtained. Five finite element models of the Japanese head were constructed by a transformed finite element model of an average European adult male (H-Head model) using Free Form Deformation (FFD) technique. The constructed models represent the 5th and 95th percentile of the first 2 scales obtained by MDS. The same acceleration pulse was applied to the H-Head model and the five finite element models. The cause of the difference was considered to be differences in pressure distribution in the brain caused by the differences in the head shape. Variation in the head shape should be taken into account in simulating the effects of impact using a finite element model.
X