Refine Your Search

Topic

Author

Search Results

Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Journal Article

Development of a Diesel Emission Catalyst System for Meeting US SULEV Standards

2008-04-14
2008-01-0449
In recent years, catalyst systems such as a lean NOx trap (LNT) catalyst system and a urea selective catalytic reduction (SCR) system have been developed to obtain cleaner diesel emissions. At Nissan, we developed an emission control system for meeting Tier 2 Bin 5 requirements in 2003. On the basis of that technology, a new HC-NOx trap catalyst system has now been developed that complies with the SULEV standards without increasing the catalyst volume and precious metal loading. Compliance with the SULEV standards requires a further reduction of HC (NMHC) emissions by 84% and NOx by 60% compared with the emission performance Tier 2 Bin 5 compliant catalyst system. Consequently high conversion performance for both HCs and NOx is needed. An investigation of HC emission behavior under the FTP75 mode showed that a reduction of cold-phase HCs was critical for meeting the standard. Large quantities of HCs above C4 are emitted in the cold state.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Development of a Standalone Navigation and Audio-Visual System (Multi-AV System)

1990-02-01
900473
This paper describes the Multi-AV System featured in the 1989 model Nissan Cedric, Gloria, and CIMA. It is composed of a navigation system and an audio-visual system. The former system tracks the location of the vehicle and shows it on a CRT map display. This standalone navigation system has been achieved using a map-matching technique along with a terrestrial magnetic field sensor and wheel speed sensors installed at the wheels. Information on hotels, golf courses, Nissan dealers and other items can be obtained. A CD-ROM is employed as the memory. The audio-visual system consists of a radio, cassette deck, CD player, and TV. The Multi-AV System combines the practicality of a navigation function with the entertainment capabilities of an audio-visual system to satisfy diverse needs.
Technical Paper

A Study of an Analysis Method for Trace Substances in Vehicle Exhaust Gas

2007-04-16
2007-01-0306
A new method for measuring unregulated substances in the exhaust gas is being investigated to clarify the influence of the vehicles' exhaust emissions into the environment. This paper explains our work on developing an analysis method for detecting and quantifying trace substances in the exhaust gas. A new analysis method was examined that uses thermal desorption to analyze trace amounts of polycyclic aromatic hydrocarbons (PAHs) in vehicle exhaust gas. This technique is faster than conventional methods and does not require any preconditioning of the samples before analysis. While lead and chloromethane were detected in the exhaust gas samples, it was made clear that these substances did not originate in the engine system. Accordingly, the results of this study indicate that careful attention must be paid to the test environment and the presence of measurement interfering substances in exhaust samples when measuring trace constituents in the exhaust gas from low-emission vehicles.
Technical Paper

Research and Development Work on High-performance Lithium-ion Batteries for EV Application

2008-04-14
2008-01-1332
From the beginning of the 1990s, we have been vigorously investigating a high-performance power source system for application to environmental vehicles, focusing our research and development efforts specifically on lithium-ion batteries. In order to adapt a battery system to the requirements of the target vehicle, battery performance must be predicted and designed more accurately. In the case of hybrid electric vehicles, for example, battery power must be reliably assured. Improving battery power requires quantitative analytical methods as fundamental techniques for understanding the basic processes that take place in a battery. From this perspective, we began constructing a battery simulation model from scratch in the middle of the 1990s concurrently with our battery R&D activities. The model simulates electrode reactions and charge transport and has been used in investigating the influence of these factors on battery performance.
Technical Paper

Thermal Imaging Technology using a Thermoelectric Infrared Sensor

2008-04-14
2008-01-0912
This paper describes a low-cost 48 × 48 element thermal imaging camera intended for use in measuring the temperature in a car interior for advanced air conditioning systems. The compact camera measures 46 × 46 × 60 mm. It operates under a program stored in the central processing unit and can measure the interior temperature distribution with an accuracy of ±0.7°C in range from 0 to 40°C. The camera includes a thermoelectric focal plane array (FPA) housed in a low-cost vacuum-sealed package. The FPA is fabricated with the conventional IC manufacturing process and micromachining technology. The chip is 6.5 × 6.5 mm in size and achieves high sensitivity of 4,300 V/W, which is higher than the performance reported for any other thermopile. This high performance has been achieved by optimizing the sensor's thermal isolation structure and a precisely patterned Au-black absorber that attains high infrared absorptivity of more than 90%.
Technical Paper

Research on Large Capacity, High Power Lithium-ion Batteries

2009-04-20
2009-01-1389
Aiming for an environmental vehicle, since the 1990s we have narrowed our focus to the development of an exclusive use lithium-ion battery, and we have strongly advanced our examinations into high-performance power supply systems. In order to adapt a battery to meet vehicle requirements, it is necessary to more accurately predict battery performance, and have the ability to design it. For example, in the applicability to HEVs(Hybrid Electric Vehicles), ensuring battery power with certainty is required, but in order to improve battery power, the basic process that occurs inside the battery was restrained, so it is possible that the quantitative analytical approach is the necessary fundamental technology.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

2010-10-25
2010-01-2246
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

2010-10-19
2010-01-2312
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
Technical Paper

Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards

2001-03-05
2001-01-0200
Experimental investigations were conducted with a direct-injection diesel engine to improve exhaust emission, especially nitrogen oxide (NOx) and particulate matter (PM), without increasing fuel consumption. As a result of this work, a new combustion concept, called Modulated Kinetics (MK) combustion, has been developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion, respectively. The characteristics of a new combustion concept were investigated using a single cylinder DI diesel engine and combustion photographs. The low compression ratio, EGR cooling and high injection pressure was applied with a multi-cylinder test engine to accomplish premixed combustion at high load region. Combustion chamber specifications have been optimized to avoid the increase of cold-start HC emissions due to a low compression ratio.
Technical Paper

Combination of Combustion Concept and Fuel Property for Ultra-Clean DI Diesel

2004-06-08
2004-01-1868
Experimental investigations were previously conducted with a direct-injection diesel engine with the aim of reducing exhaust emissions, especially nitrogen oxides (NOx) and particulate matter (PM). As a result of that work, a combustion concept, called Modulated Kinetics (MK) combustion, was developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion to achieve a cleaner diesel engine. In subsequent work, it was found that applying a low compression ratio was effective in expanding the MK combustion region on the high-load side. The MK concept was then combined with an exhaust after-treatment system and applied to a test vehicle. The results indicated the attainment of ULEV emission levels, albeit in laboratory evaluations. In the present work, the combination of the MK combustion concept and certain fuel properties has been experimentally investigated with the aim of reducing exhaust emissions further.
Technical Paper

Development of Third Generation of Gasoline P-ZEV Technology

2003-03-03
2003-01-0816
This paper describes the third generation of the partial zero emission vehicle (P-ZEV) technology originally adopted on the Nissan Sentra CA sold in California. The 2000 Nissan Sentra CA became the world's first gasoline-fueled car to qualify for P-ZEV credits from the California Air Resources Board (CARB). The third-generation P-ZEV system has been substantially reduced in size and cost, compared with the Sentra CA system, enabling it to be used on high-volume models. This system complies with the P-ZEV requirements, including those for zero evaporative emissions and Onboard Diagnostics II (OBD-II). To achieve a more compact and lower-cost system, an ultra-thin-walled catalyst substrate, the world's first to attain a 1.8-mil wall thickness, has been adopted along with catalysts that display excellent low-temperature activity. As a result, low-temperature catalyst activity has been significantly improved.
Technical Paper

Emission Reduction Technologies Adopted for Japan U-LEV Certified Vehicles

2003-05-19
2003-01-1872
This paper describes the emission reduction technologies applied to 4- and 6-cylinder engines used on Japanese market models certified as ultra-low emission vehicles (U-LEVs) in Japan. To qualify for this rigorous U-LEV certification, a vehicle must reduce hydrocarbon (HC) and nitrogen oxide (NOx) emissions by an additional 75% from the levels mandated by Japan's 2000 exhaust emission regulations. Nearly all Nissan Japanese models fitted with a gasoline engine, ranging from in-line 4-cylinder engines to V6 engines, have now been certified as U-LEVs. This has been accomplished by further improving the emission reduction technologies that were developed for the Sentra CA, which was launched in the U.S. market in 2000 as the world's first gasoline-fueled vehicle to qualify for Partial Zero Emission Vehicle (P-ZEV) credits from the California Air Resources Board. The specific new technologies involved are as follows.
Technical Paper

Development of an Electric Concept Vehicle with a Super Quick Charging System

1992-02-01
920442
Recent environmental concerns such as atmospheric pollution and energy conservation have intensified the need to develop pollution-free, energy-efficient vehicles. One such solution is the electric automobile which draws its power from rechargeable batteries. There are few vehicles on the road today because present batteries can store very little energy compared with that of a tank of gasoline. To obtain adequate range, this concept vehicle adopts a new battery which can be recharged to 40% of capacity in six minutes. This super quick charging system makes it possible to recharge the batteries at an electric recharging station just as gasoline-powered vehicles are refilled at service stations. The electric concept vehicle also has improved aerodynamics, reduced rolling resistance and a lighter curb weight, which help to assure adequate range.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

An Exploratory Study of the Driver Workload Assessment by Brain Functional Imaging Using Onboard fNIRS

2011-04-12
2011-01-0592
In making driver workload assessments, it is important to evaluate the driver's level of brain activity because the operation of a motor vehicle presumably involves higher-order brain functions. Driving on narrow roads in particular probably imposes a load on the driver's brain functions because of the need to be cognizant of the tight space and to pay close attention to the surroundings. Test vehicles were fitted with a functional near-infrared spectroscopy (fNIRS) system for measuring bloodstream concentrations at 32 locations in the frontal lobe of the participating drivers in order to evaluate their levels of mental activity while driving on narrow roads. The results revealed significant increases in cerebral blood flow corresponding to the perceived workload. This suggests that increases in cerebral blood flow can be used as an effective index for estimating mental workloads.
Technical Paper

Effects of Clean Fuels (Reformulated Gasolines, M85, and CNG) on Automotive Emissions

1992-10-01
922380
With the aim of improving the air quality in large cities, the California Air Resources Board (CARB) has stipulated that non-methane organic gas (NMOG) composed of carbon numbers from C1 to C12 must be reduced for vehicle categories designated as Transitional Low Emission Vehicles (TLEVs), Low Emission Vehicles (LEVs), Ultra low Emission Vehicles (ULEVs), and Zero Emission Vehicles (ZEVs). Although considerable research work has been done on this issue to date, the entire picture is still not clear. Studies done by the authors have been aimed at providing a better understanding of the potential for reducing automotive tailpipe emissions by using several clean fuel candidates. The major questions of concern are the extent to which emissions of certain species can actually be reduced and what fuel can provide the best performance under a reduced NMOG condition.
X