Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of Thinnest Wall Catalyst Substrate

2002-03-04
2002-01-0358
The thinnest wall thickness of automotive catalyst substrates has previously been 30 μm for metal substrates and 50 μm for ceramic substrates. This paper describes a newly developed catalyst substrate that is the world's first to achieve 20-μm-thick cell walls. This catalyst substrate features low thermal capacity and low pressure loss. Generally, a thinner cell wall decreases substrate strength and heat shock resistance. However, the development of a “diffused junction method”, replacing the previous “wax bonding method”, and a small waved foil has overcome these problems. This diffused junction method made it possible to strengthen the contact points between the inner waved foil and the rolled foil compared with previous substrates. It was also found that heat shock resistance at high temperature can be much improved by applying a slight wave to the foil instead of using a plane foil.
Technical Paper

High Performance Motor and Inverter System for a Newly Developed Electric Vehicle

2018-04-03
2018-01-0461
This paper describes a newly developed motor and inverter system with maximum torque of 320 Nm and maximum power of 110 kW for a 2018 model year EV. The system achieves this performance with no increase in size from the previous 2013 model year system with maximum torque of 254 Nm and maximum power of 80 kW. The specific features of the new system described in this paper are summarized below. A new inverter power module that adopts a direct cooling structure produces higher current density than the previous model. The designs of components experiencing structural and electrical variation that affects heat generation by the power semiconductors were confirmed. Furthermore, the motor temperature is estimated for thermal protection. These features allow for control logic that can optimally manage the temperatures of the power semiconductors and the motor to facilitate the high torque performance of the system.
Technical Paper

Nissan Oil Econometer Permits the Measurement of Engine Oil Consumption

1981-06-01
810754
A technique has been developed which permits the determination of engine oil consumption on an instantaneous basis. The procedure uses the sulfur in the oil as a tracer. The concentration of sulfur compounds in the exhaust gas is determined using a Flame Photometric Detector (FPD). Special modifications of the FPD reduce the interference of other gases and improve the accuracy of the instrument. Although the unit is operationally simple, its abilities to measure continuously and respond quickly allow it to surpass conventional methods for measurement of oil consumption.
Technical Paper

Nissan's Low-Noise Full-Scale Wind Tunnel

1987-02-01
870250
In October 1985, a new wind tunnel was completed and put into operation at the Nissan Technical Center. This paper describes its main specifications and performance features, and gives results of a number of experiments using the new facility. It is a closed-circuit wind tunnel of the so-called Göttingen type, with a semi-open test section. The test section is equipped with two different nozzles, which are used interchangeably depending on the type of testing being carried out. The larger nozzle has a maximum wind velocity of 190 kmh, and a cross-section 4 m high by 7 m wide. The other is 3 m high by 5 m wide and has a maximum wind velocity of 270 kmh. All of the testing equipment in the tunnel, including the axial-flow fan, six-component aerodynamic balance, and traverse system, are operated automatically by a control system made up of several computers linked together. The most notable feature of this wind tunnel is the large reduction that has been made in background noise.
Technical Paper

Design Methodology for Motor Thermal Management in Vehicle Electrification

2019-12-19
2019-01-2368
In order to improve the accuracy of the coil temperature prediction, detailed fundamental experiments have been conducted on thermal resistances that are caused by the void air gap and contact surfaces. The thermal resistance of the coil around the air gap can be calculated by an air gap distance and air heat conductivity. Contact surface thermal resistance between the core and the housing was constant regardless of the press-fitting state in this experiment. Prediction accuracy of the coil temperature is improved by including the heat resistance characteristics that is obtained by the basic experiment to conjugate heat transfer analysis model.
X