Refine Your Search

Topic

Author

Search Results

Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Technical Paper

A Study of Technology for Assembling Vehicle Endurance Reliability

1991-09-01
911924
The ways in which vehicles are used in the field are continually becoming more diverse. In order to provide the optimum solution with respect to performance and weight, it is necessary to be able to assure vehicle endurance reliability with a high degree of accuracy in relation to the manner of use in each market. This situation has increased the importance of accurately quantifying the ways in which vehicles are used in the field and of designing vehicles with sufficient endurance reliability to match the usage requirements. This report presents a “market model” by which the manner of usage in the field can be treated quantitatively using combinations of environmental factors that influence the road load, drive load and corrosion load, representing typical loads vehicles must withstand.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Development of Lightweight Connecting Rod Based on Fatigue Resistance Analysis of Microalloyed Steel

1990-02-01
900454
Application of microalloyed steel to automobile parts is becoming increasingly common in Japan. However, fatigue properties of actual automotive forged parts with slight notches on their surface have not been fully clarified. In this work, the fatigue properties of microalloyed steel were studied using test specimens and also actual automotive parts. The results indicated that microalloyed steel with an optimal microstructure showed higher notch fatigue resistance than quenched-tempered steel. The improvement of material technology and the application of microalloyed steel have not only served to bring product costs down, but have paved the way for part weight reductions. Lightweight connecting rods for the newly developed Nissan engines have been produced, contributing to improved engine performance.
Technical Paper

Development of Microalloyed Steel for Fracture Split Connecting Rod

2007-04-16
2007-01-1004
In Europe and the U.S., fracture split connecting rods are used in many types of current engines. This process can eliminate the machining of crankshaft end and eliminate the dowel pin for positioning. The most important key for fracture split connecting rods is a reduction in the plastic deformation during the fracture splitting process. For this reason, sinter-forged materials and pearlitic steels (C70S6) are used for fracture split connecting rods because of their low ductility. Such types of steel, however, are inferior to the hot forged microalloyed steels typically used as connecting rod material in Japan in terms of buckling strength and machinability although they are easier to fracture split. On the other hand, the conventional microalloyed steels used for connecting rods in Japan are not suitable for fracture splitting. The reason is that these steels have too much ductility and associated plastic deformation for fracture splitting.
Technical Paper

Investigation of Road Recognition Using Ar-Model

1998-10-19
98C022
This paper describes an image processing method for recognizing white lines on the road ahead to accomplish automatic lane tracking. The behavior of detected points on the white lines can be regarded as multi-channel time-series data. The stochastic behavior of each point correlates with not only its own past behavior but also the behavior of other points around it. Behavior is identified by using a multi-variable auto-regressive (AR) model. This method can estimate the road configuration ahead logically even if the points cannot be detected clearly because a line is discontinuous or is hidden by a forward vehicle.
Technical Paper

Interactive Information Delivery Navigation System

1998-10-19
98C029
In the past few years, car navigation and cellular phone system are rapidly increased in Japan and vehicle information and communication system (VICS), the public traffic information service started in 1996, accelerates realization of ITS world. This rapid movement causes drivers to want more information on not only traffic jam but also other versatile items like parking availability, weather report and the latest news, etc. via cellular phone network. This paper describes the on-demand information service with the interactive human interface by operators and the development of the information center and the in-vehicle system to realize it.
Technical Paper

Uniform Quenching Technology by Using Controlled High Pressure Gas after Low Pressure Carburizing

2008-04-14
2008-01-0365
To reduce quenching distortion, step gas quenching has been proposed in recent years, which refers to rapid gas cooling of steel from austenitizing temperature to a point above or below Ms temperature, where it is held for a specific period of time, followed by gas cooling. In this study, by using infrared thermography combined with conventional thermocouple, a new temperature monitoring and control system was developed to realize the step gas quenching process of a hypoid ring gear after low pressure carburizing. The test production results indicate that by using the new monitoring and control system, we can control the gas quenching process and the distortion of carburized gear treated by step gas quenching can be reduced significantly compared with standard gas quenching.
Technical Paper

Launch of ITS in Yokohama, Japan- Progress of an ITS Field Operational Test for Traffic Safety and Congestion -

2008-10-20
2008-21-0011
In order to reduce traffic accidents and ease traffic congestion utilizing ITS (Intelligent Transportation System), a large-scale FOT (Field Operational Test) involving 2,000 ordinary drivers was launched in October 2006 in the city of Yokohama in Kanagawa, Japan. The test is slated to continue through March 2009. Target applications include Intersection Collision Avoidance using V-I (Vehicle-to-Infrastructure) communication, ISA (Intelligent Speed Advisory) using digital maps in the vehicle navigation system, and the probe system, which provides detailed traffic information. In this paper, the progress of this FOT will be introduced.
Technical Paper

Development of an FCV with a New FC Stack for Improved Cold Start Capability

2010-04-12
2010-01-1093
To promote widespread use of fuel cell vehicles (FCVs), further improvement of cold start capability is required for operation in various extreme temperature regions all over the world. Sub-freezing, cold start issues of fuel cells must be resolved through gaining a better understanding of the physical phenomena taking place in a cell during cold start and by elucidating the mechanisms hindering cold startup. Nissan has improved its understanding of the physical phenomena occurring in a fuel cell (FC) during cold startup by a laboratory-scale FC experiment at subfreezing temperatures and a numerical calculation that expresses various transport processes in a fuel cell, including those of the reactant gases, water, electrons and heat. The results have identified several necessary conditions for mass transport in a cell during cold startup and the factors that limit and govern the phenomena involved.
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

2010-10-19
2010-01-2312
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
Technical Paper

Research on a Brake Assist System with a Preview Function

2001-03-05
2001-01-0357
Traffic accidents in Japan claim some 10,000 precious lives every year, and there is seemingly no end to the problem. In an effort to overcome this situation, vehicle manufacturers have been pushing ahead with the development of a variety of advanced safety technologies. Joint public-private sector projects related to Intelligent Transport Systems (ITS) are also proceeding vigorously. Most accidents can be attributed to driver error in recognition, judgment or vehicle operation. This paper presents an analysis of driver behavior characteristics in emergency situations that lead to an accident, focusing in particular on operation of the brake pedal. Based on the insights gained so far, we have developed a Brake Assist System with a Preview Function (BAP) designed to prevent accidents by helping drivers with braking actions. Experimental results have confirmed that BAP is effective in reducing the impact speed and the frequency of accidents in emergency situations.
Technical Paper

A Study of a Safety Support System that Uses Information from the Road Infrastructure

2004-03-08
2004-01-0448
A safety support system that uses information received from the road infrastructure is being developed in a project sponsored by the Ministry of Land, Infrastructure and Transport. The purpose of this system is to reduce the number of accidents at intersections and on highways. The system is now being tested in an experimental vehicle. This paper describes what kind of information is helpful to drivers based on the experimental results.
Technical Paper

Development of a New 5.6L Nissan V8 Gasoline Engine

2004-03-08
2004-01-0985
This paper describes a new 5.6-liter DOHC V8 engine, VK56DE, which was developed for use on a new full-size sport utility vehicle and a full-size pickup truck. To meet the demands for acceleration performance when merging into freeway traffic, passing or re-acceleration performance from low speed in city driving and hill-climbing or passing performance when towing, the VK56DE engine produces high output power at top speed and also generates ample torque at low and middle engine speeds (90% of its maximum torque is available at speeds as low as 2500 rpm). Furthermore, this engine achieves top-level driving comfort in its class as a result of being derived from the VK45DE engine that was developed for use on a sporty luxury sedan. Development efforts were focused on how to balance the required performance with the need for quietness and smoothness.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of an Adaptive Cruise Control System with Stop-and-Go Capability

2001-03-05
2001-01-0798
An Adaptive Cruise Control system with stop-and-go capability has been developed to reduce the driver's workload in traffic jams on expressways. Based on an analysis of driving behavior characteristics in expressway traffic jams, a control system capable of modeling those characteristics accurately has been constructed to provide natural vehicle behavior in low-speed driving. The effectiveness of the system was evaluated with an experimental vehicle, and the results confirmed that it reduces the driver's workload. This paper presents an outline of the system and its effectiveness along with the experimental results.
X