Refine Your Search

Topic

Author

Search Results

Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Technical Paper

Development of JASO GLV-1 0W-8 Low Viscosity Engine Oil for Improving Fuel Efficiency considering Oil Consumption and Engine Wear Performance

2020-04-14
2020-01-1423
Engine oil with viscosity lower than 0W-16 has been needed for improving fuel efficiency in the Japanese market. However, lower viscosity oil generally has negative aspects with regard to oil consumption and anti-wear performance. The technical challenges are to reduce viscosity while keeping anti-wear performance and volatility level the same as 0W-20 oil. They have been solved in developing a new engine oil by focusing on the molybdenum dithiocarbamate friction modifier and base oil properties. This paper describes the new oil that supports good fuel efficiency while reliably maintaining other necessary performance attributes.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Journal Article

Analysis of Oil Film Generation on the Main Journal Bearing Using a Thin-Film Sensor and Elasto-Hydrodynamic Lubrication (EHL) Model

2013-04-08
2013-01-1217
Reducing friction in the crankshaft main bearings is an effective means of improving the fuel efficiency of reciprocating internal combustion engines. To realize these improvements, it is necessary to understand the lubricating conditions, in particular the oil film pressure distributions between crankshaft and bearings. In this study, we developed a thin-film pressure sensor and applied it to the measurement of engine main bearing oil film pressure in a 4-cylinder, 2.5 L gasoline engine. This thin-film sensor is applied directly to the bearing surface by sputtering, allowing for measurement of oil film pressure without changing the shape and rigidity of the bearing. Moreover, the sensor material and shape were optimized to minimize influence from strain and temperature on the oil film pressure measurement. Measurements were performed at the No. 2 and 5 main bearings.
Technical Paper

Research and Development Work on High-performance Lithium-ion Batteries for EV Application

2008-04-14
2008-01-1332
From the beginning of the 1990s, we have been vigorously investigating a high-performance power source system for application to environmental vehicles, focusing our research and development efforts specifically on lithium-ion batteries. In order to adapt a battery system to the requirements of the target vehicle, battery performance must be predicted and designed more accurately. In the case of hybrid electric vehicles, for example, battery power must be reliably assured. Improving battery power requires quantitative analytical methods as fundamental techniques for understanding the basic processes that take place in a battery. From this perspective, we began constructing a battery simulation model from scratch in the middle of the 1990s concurrently with our battery R&D activities. The model simulates electrode reactions and charge transport and has been used in investigating the influence of these factors on battery performance.
Technical Paper

Research on Large Capacity, High Power Lithium-ion Batteries

2009-04-20
2009-01-1389
Aiming for an environmental vehicle, since the 1990s we have narrowed our focus to the development of an exclusive use lithium-ion battery, and we have strongly advanced our examinations into high-performance power supply systems. In order to adapt a battery to meet vehicle requirements, it is necessary to more accurately predict battery performance, and have the ability to design it. For example, in the applicability to HEVs(Hybrid Electric Vehicles), ensuring battery power with certainty is required, but in order to improve battery power, the basic process that occurs inside the battery was restrained, so it is possible that the quantitative analytical approach is the necessary fundamental technology.
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

2010-10-19
2010-01-2312
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
Technical Paper

Development of a Compact 3-Liter V6 Nissan Engine

1992-02-01
920672
This paper presents a compact 3-liter DOHC V6 engine that has been newly designed for the Nissan Maxima. The aims set for the development of this new engine were to achieve a compact package and excellent fuel efficiency. The engine is built around a 4-valve-per-cylinder configuration with a high compression ratio and incorporates a variable valve timing control system, aerodynamic intake ports and roller rocker arms. These features enable it to provide good fuel economy while delivering excellent acceleration. The compact package has been achieved by adopting a 2-stage cam drive, narrow angle valve geometry and an optimized arrangement for the endpivot type hydraulic lash adjusters.
Technical Paper

Development of an Electric Concept Vehicle with a Super Quick Charging System

1992-02-01
920442
Recent environmental concerns such as atmospheric pollution and energy conservation have intensified the need to develop pollution-free, energy-efficient vehicles. One such solution is the electric automobile which draws its power from rechargeable batteries. There are few vehicles on the road today because present batteries can store very little energy compared with that of a tank of gasoline. To obtain adequate range, this concept vehicle adopts a new battery which can be recharged to 40% of capacity in six minutes. This super quick charging system makes it possible to recharge the batteries at an electric recharging station just as gasoline-powered vehicles are refilled at service stations. The electric concept vehicle also has improved aerodynamics, reduced rolling resistance and a lighter curb weight, which help to assure adequate range.
Technical Paper

Performance and Exhaust Emissions of Nissan FFV NX Coupe

1992-02-01
920299
The FFVs under study operates on either M85 or M0 or any mixture of the two. Nissan has been actively conducting reseach and development on flexible fuel vehicles (FFVs) to explore the possibilities for long-range energy conservation and air quality improvement. The engine converted for use in these FFVs is a 1.6 liter, four-cylinder in-line powerplant, with dual overhead camshafts and four valves per cylinder. It employs the Nissan Variable valve timing Control System (NVCS). The fuel sensor for measuring the methanol concentration in the fuel has been improved both in terms of accuracy and durability. This paper describes the engine performance and exhaust emission levels (formaldehydes unburned methanol and HC emissions) obtained with both M85 and M0.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Technologies for Reducing Cold-Start Emissions of V6 ULEVs

1997-02-24
971022
New technologies are needed to reduce cold-start emissions in order to meet the more stringent regulations that will go into effect in Europe (EC2000 or EC2005) and in California (ULEV), especially for larger engines such as 6- and 8-cylinder units. One new technology in this regard is the electrically heated catalyst (EHC). However, the use of EHCs alone is not sufficient to achieve the necessary reduction in emissions. This paper discusses techniques for effectively combining the elements of an EHC system, including the introduction of secondary air into the exhaust, improved control of the air/fuel ratio, and an electric power supply method for EHCs. It is shown that it is more effective to promote exothermic reactions in the exhaust manifold than at the EHC. A suitable method for this purpose is to introduce secondary air into the exhaust near the exhaust valves.
Technical Paper

Development of a Performance Prediction Program for EVs Powered by Lithium-ion Batteries

1997-02-24
970239
The performance capabilities which hold the key to the acceptance of electric vehicles (EVs) includes range and acceleration. Range can be effectively extended by increasing the size of the batteries used, but it requires a trade-off with acceleration performance which deteriorates due to the increased weight. The FEV-II and Prairie Joy EV exhibited at the 1995 Tokyo Motor Show were equipped with high-performance lithium-ion batteries that achieve both high energy and power densities, to provide an excellent balance of range and acceleration. Futher more, the batteries exceptionally high charging efficiency enables them to accept regenerative energy effectively. This feature improves range, and also allows the battery state of charge (SOC) to be determined accurately. This characteristic was used to develop a highly accurate battery model which was incorporated in a simulation program for predicting EV performance.
Technical Paper

Development of a Lithium-ion Battery System for EVs

1997-02-24
970238
This paper presents a lightweight, high-performance Lithium-ion Battery System developed jointly by Nissan Motor Co. and Sony Corp. for electric vehicle (EV) use. Electric vehicles are generally powered by a battery pack consisting of numerous cells connected in a series. Management techniques to elicit the maximum performance of the battery pack are needed, including a function for monitoring individual cells to prevent them from over-discharging. Because of high cell voltage, lithium-ion batteries enable the number of cells in a battery pack to be greatly reduced compared with other types of battery systems. They also allow accurate detection of the battery State of Charge (SOC) based on the battery voltage. These characteristics are conducive to the application of battery pack management technology. These concepts provided the basis for the development of a Lithium-ion Battery System for EV application.
Technical Paper

The New Nissan 1.7 Liter 4 Cylinder Diesel Engine

1983-06-06
831008
The new Nissan 1.7 liter 4 cylinder diesel engine has been developed to meet the social requirements for energy conservation. The main objective was to improve fuel economy without sacrificing driveability, and this has been achieved by minimizing engine weight, reducing mechanical friction loss and optimizing the combustion system. The CA series gasoline engine, which is known for its light weight, was chosen as the base engine for dieselization. The swirl chamber combustion system used for the LD28 engine was modified to satisfy the requirements for high power, good fuel economy and low noise. Engine noise has been reduced with the aid of several analytical methods such as laser holography. Special attention has been paid to the reduction of diesel knock which is most offensive to the ear. To install this engine in a small FWD vehicle transversely, much effort went into the minimizing of the engine length and width.
Technical Paper

Swirling Flow Type Jet Pump for Transferring Fuel Inside Saddle-Shaped Fuel Tanks

1989-09-01
891960
This paper presents a swiring flow type jet pump which has been developed and in put into practical use in transferring fuel between sumps in saddle-shaped fuel tanks. The pump is driven by the force of excess fuel returning from the engine. The major structural features of the pump are described along with its performance. Various problems encountered in the process of developing the pump are discussed along with the technologies developed to resolve them. Particular attention is focused on the effects that the geometries if the nozzle, throat and swirling groove have on fuel transfer efficiency. The results of experiments carried out to analyze these correlations are also presented.
Technical Paper

Study of the Generation mechanism for Abnormal Exhaust Noise

1987-10-01
871924
Based on experimental analysis, the generation mechanism of abnormal exhaust noise which is characterized by an intermittent high frequency aetallic sound, is clarified by bench testing of a FWD vehicle. The noise is caused by large amplitude pressure waves (finite amplitude waves) in the exhaust pipe. They are amplified due to interference between reflected waves and subsequent waves from the engine, and are finally transformed into shock waves in the propagation process along the exhaust pipe, resulting in abnormal exhaust noise. By theoretical analysis of finite amplitude waves, the wave profile in the propagation process and the transition distance to the shock wave can be solved analytically where the assumptions of mass, momentum, and energy conservation are valid, until the moment of shock wave formation. The transition distance is a key parameter in analyzing the growth and existence of shock waves.
X