Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

2007-10-29
2007-01-4010
The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios (Φ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions.
Technical Paper

The Use of Small Engines as Surrogates for Research in Aftertreatment, Combustion, and Fuels

2006-11-13
2006-32-0035
In this research, small, single cylinder engines have been used to simulate larger engines in the areas of aftertreatment, combustion, and fuel formulation effects. The use of small engines reduces overall research cost and allows more rapid experiments to be run. Because component costs are lower, it is also possible to investigate more variations and to sacrifice components for materials characterization and for subsequent experiments. Using small engines in this way is very successful in some cases. In other cases, limitations of the engines influence the results and need to be accounted for in the experimental design and data analysis. Some of the results achieved or limitations found may be of interest to the small engine market, and this paper is offered as a summary of the authors' research in these areas. Research is being conducted in two areas. First, small engines are being used to study the rapid aging and poisoning of exhaust aftertreatment catalysts.
Technical Paper

Combustion and Emissions Modeling of a Gasoline HCCI Engine Using Model Fuels

2009-04-20
2009-01-0669
To address the growing need for accurate predictions of combustion phasing and emissions for development of advanced engines, a more accurate definition of model fuels and their associated chemical-kinetics mechanisms are necessary. Wide variations in street fuels require a model-fuel blending methodology to allow simulation of fuel-specific characteristics, such as ignition timing, emissions, and fuel vaporization. We present a surrogate-blending technique that serves as a practical modeling tool for determination of surrogate blends specifically tailored to different real-fuel characteristics, with particular focus on model fuels for gasoline engine simulation. We start from a palette of potential model-fuel components that are based on the characteristic chemical classes present in real fuels. From this palette, components are combined into a surrogate-fuel blend to represent a real fuel with specific fuel properties.
Technical Paper

A Comparison of HCCI Ignition Characteristics of Gasoline Fuels Using a Single-Zone Kinetic Model with a Five Component Surrogate Fuel

2008-10-06
2008-01-2399
While gasoline surrogate development has progressed in the areas of more complex surrogate mixtures and in kinetic modeling tools and mechanism development, it is generally recognized that further development is still needed. This paper represents a small step in supporting this development by providing comparisons between experimental engine data and surrogate-based kinetic models. In our case, the HCCI engine data comes from a port-injected, single-cylinder research engine with intake-air heating for combustion phasing control. Timing sweeps were run at constant fuel rate for three market gasolines and five surrogate mixtures. Modeling was done using the CHEMKIN software with a gasoline mechanism set containing 1440 species and 6572 reactions. Five pure compounds were selected for the surrogate blends and include iso-octane, n-heptane, toluene, methylcyclohexane, and 1-hexene.
Technical Paper

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

2009-11-02
2009-01-2645
The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC).
Technical Paper

Deactivation of Diesel Oxidation Catalysts by Oil-Derived Phosphorus

2006-10-16
2006-01-3422
The poisoning of diesel oxidation catalysts (DOCs) by the engine oil additive zinc dialkyldithiophosphate (ZDDP) is investigated in the present study. A 517cc single-cylinder diesel engine is used to accelerate the phosphorus poisoning of DOCs by artificially increasing the ZDDP consumption to approximately 700 times normal operation by three different methods. These include lube-oil doped fuel, intake manifold, and exhaust manifold injection with lube-oil containing an elevated level of ZDDP. The deactivation of DOCs under these conditions is characterized by a variety of physical and chemical techniques. Surface composition and structure of the poisoned catalysts analyzed with SEM-EDS show differences depending on the method of ZDDP introduction. Exhaust manifold injection produces a zinc phosphate glaze which masks the surface to species diffusion. Fuel and intake manifold injection methods produce chemically absorbed phosphorus on the catalyst washcoat surface.
Technical Paper

Experimental and Statistical Comparison of Engine Response as a Function of Fuel Chemistry and Properties in CI and HCCI Engines

2012-04-16
2012-01-0857
Knowledge of how fuel chemistry and properties affect engine response is necessary for effective engine control. It may also be possible to tailor fuels to specific combustion modes, engine geometries, or for desired outputs to generate lower emissions and/or higher IMEP and efficiency. Fuel chemistry and properties have different effects on engine performance in CI and HCCI combustion. In this study, experiments were performed using a 517cc Hatz single-cylinder diesel engine and the same engine converted to run in HCCI mode, both equipped with advanced combustion analysis equipment. Engine performance results were modeled statistically with respect to fuel properties, operating parameters, and engine type to determine the extent to which fuel characteristics influence engine response, and how the response differs between the two combustion modes. Experiments were performed using 16 fuels: ULSD, 9 FACE diesel fuels, and 6 P20 blends of unprocessed plant oils.
Technical Paper

On the Nature of Cyclic Dispersion in Spark Assisted HCCI Combustion

2006-04-03
2006-01-0418
We report experimental observations of cyclic combustion variability during the transition between propagating flame combustion and homogeneous charge compression ignition (HCCI) in a single-cylinder, stoichiometrically fueled, spark-assisted gasoline engine. The level of internal EGR was controlled with variable valve actuation (VVA), and HCCI combustion was achieved at high levels of internal EGR using the VVA system. Spark-ignition was used for conventional combustion and was optionally available during HCCI. The transition region between purely propagating combustion and HCCI was mapped at multiple engine speeds and loads by incrementally adjusting the internal EGR level and capturing data for 2800 sequential cycles. These measurements revealed a complex sequence of high COV, cyclic combustion variations when operating between the propagating flame and HCCI limits.
X