Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Long Life Axial Fatigue Strength Models for Ferrous Powder Metals

2018-04-03
2018-01-1395
Two models are presented for the long life (107 cycles) axial fatigue strength of four ferrous powder metal (PM) material series: sintered and heat-treated iron-carbon steel, iron-copper and copper steel, iron-nickel and nickel steel, and pre-alloyed steel. The materials are defined at ranges of carbon content and densities using the broad data available in the Metal Powder Industries Federation (MPIF) Standard 35 for PM structural parts. The first model evaluates 107 cycles axial fatigue strength as a function of ultimate strength and the second model as a function of hardness. For all 118 studied materials, both models are found to have a good correlation between calculated and 107 cycles axial fatigue strength with a high Pearson correlation coefficient of 0.97. The article provides details on the model development and the reasoning for selecting the ultimate strength and hardness as the best predictors for 107 cycles axial fatigue strength.
Technical Paper

A Mesoscopic-Stress Based Fatigue Limit Theory - A Revised Dang Van's Model

2014-04-01
2014-01-0902
Dang Van (Dang Van et al., 1982 and Dang Van, 1993) states that for an infinite lifetime (near fatigue limit), crack nucleation in slip bands may occur at the most unfavorable oriented grains, which are subject to plastic deformation even if the macroscopic stress is elastic. Since the residual stresses in these plastically deformed grains are induced by the restraining effect of the adjacent grains, it is assumed that the residual stresses are stabilized at a mesoscopic level. These stresses are currently approximated by the macroscopic hydrostatic stress defined by the normal stresses to the faces of an octahedral element oriented with the faces symmetric to the principal axis; mathematically they are equal to each other and they are the average of the principal stresses.
X