Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Microstructural Contact Mechanics Finite Element Modeling Used to Study the Effect of Coating Induced Residual Stresses on Bearing Failure Mechanisms

2014-04-01
2014-01-1018
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model.
Technical Paper

Numerical Investigation of Transient Flow Effects on the Separation Parameters of a Reverse Flow Type Cyclone Particle Separator

2008-04-14
2008-01-0419
This study is concerned with computational fluid dynamics (CFD) simulations of flow in an automotive reverse flow type cyclone particle separator using the Reynolds Stress Model (RSM) turbulence model. Steady simulations were found to never fully converge, with pressure, velocity and vorticity results exhibiting small oscillations as the solution was iterated further. Transient simulations showed the presence of a main vortex precession that resulted in periodic fluctuations of the flow parameters. Fourier analysis was used to characterize this semi-periodic flow feature and to assess its effect on the two main performance measures of the cyclone: overall pressure drop and particle separation efficiency.
Technical Paper

Numerical Investigation of the Sensitivity of the Performance Criteria of an Automotive Cyclone Particle Separator to CFD Modeling Parameters

2009-04-20
2009-01-1176
Predicting the optimum performance parameters of an automotive cyclone particle separator (separation efficiency and pressure drop) using computational fluid dynamics by varying its geometrical parameters is challenging and a time consuming process due to the highly swirling nature of the flow. This study presents results of three investigations of the performance and design of a cyclone separator: a sensitivity analysis, deterministic optimization and a reliability based design optimization. All three cases involved variation of four geometric parameters that characterize the design of the cyclone.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
X