Refine Your Search

Topic

Author

Search Results

Technical Paper

Measurement and Evaluation of Vacuum Suction Cups Using Digital Image Correlation

2020-04-14
2020-01-0542
As vacuum suction cups are widely used in stamping plants, it becomes urgent and important to understand their performance and failure mode. Vacuum suction cups are employed to lift, move, and place sheet metal instead of human hands. Occasionally the vacuum cups would fail and drop parts, even it would cause expensive delays in the production line. In this research, several types of vacuum cups have been studies and compared experimentally. A new tensile device and test method was developed to measure the pulling force and deformation of vacuum cups. The digital image correlation technique has been adopted to capture and analyze the contour, deformation and strain of the cups under different working conditions. The experimental results revealed that the relevant influential parameters include cup type, pulling force angles, vacuum levels, sheet metal curvatures, etc.
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Journal Article

An RBDO Method for Multiple Failure Region Problems using Probabilistic Reanalysis and Approximate Metamodels

2009-04-20
2009-01-0204
A Reliability-Based Design Optimization (RBDO) method for multiple failure regions is presented. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with an approximate global metamodel with local refinements. The latter serves as an indicator to determine the failure and safe regions. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. An “accurate-on-demand” metamodel is used in the PRRA that allows us to handle problems with multiple disjoint failure regions and potentially multiple most-probable points (MPP). The multiple failure regions are identified by using a clustering technique. A maximin “space-filling” sampling technique is used to construct the metamodel. A vibration absorber example highlights the potential of the proposed method.
Journal Article

Design under Uncertainty using a Combination of Evidence Theory and a Bayesian Approach

2008-04-14
2008-01-0377
Early in the engineering design cycle, it is difficult to quantify product reliability due to insufficient data or information to model uncertainties. Probability theory can not be therefore, used. Design decisions are usually based on fuzzy information which is imprecise and incomplete. Various design methods such as Possibility-Based Design Optimization (PBDO) and Evidence-Based Design Optimization (EBDO) have been developed to systematically treat design with non-probabilistic uncertainties. In practical engineering applications, information regarding the uncertain variables and parameters may exist in the form of sample points, and uncertainties with sufficient and insufficient information may exist simultaneously. Most of the existing optimal design methods under uncertainty can not handle this form of incomplete information. They have to either discard some valuable information or postulate the existence of additional information.
Journal Article

Reliability Estimation for Multiple Failure Region Problems using Importance Sampling and Approximate Metamodels

2008-04-14
2008-01-0217
An efficient reliability estimation method is presented for engineering systems with multiple failure regions and potentially multiple most probable points. The method can handle implicit, nonlinear limit-state functions, with correlated or non-correlated random variables, which can be described by any probabilistic distribution. It uses a combination of approximate or “accurate-on-demand,” global and local metamodels which serve as indicators to determine the failure and safe regions. Samples close to limit states define transition regions between safe and failure domains. A clustering technique identifies all transition regions which can be in general disjoint, and local metamodels of the actual limit states are generated for each transition region.
Journal Article

Workflow and Asset Management Challenges in a Distributed Organization

2008-04-14
2008-01-1279
Increasingly Automotive OEMs and their suppliers find themselves spread across different continents. This in turn gives rise to knowledge, physical assets and key decision makers also being spread across the globe. This poses significant challenges for the companies to effectively manage and keep track of their resources. It is also challenging to work with teams spread across globe and for the team to arrive at intelligent decisions quickly and efficiently. In last few years we have spent significant amount of person hours trying to create systems and Software to help manage Workflow and Assets spread across diverse Geographic and Political areas.
Journal Article

Scanning Frequency Ranges of Harmonic Response for a Spot-Welded Copper-Aluminum Plate Using Finite Element Method

2011-04-12
2011-01-1076
In this paper, a finite element methodology is given in which finite element models of a three-weld Al-Cu plate is created with support and loading conditions emulating those seen in an optical lab. Harmonic response is sought for the models under the presumption that various defective welds are present. The numerical results are carefully examined to determine the guideline frequency range so the actual optical experiment can be carried out more efficiently.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
Journal Article

Comparison of Tribological Performance of WS2 Nanoparticles, Microparticles and Mixtures Thereof

2014-04-01
2014-01-0949
Tribological performance of tungsten sulfide (WS2) nanoparticles, microparticles and mixtures of the two were investigated. Previous research showed that friction and wear reduction can be achieved with nanoparticles. Often these improvements were mutually exclusive, or achieved under special conditions (high temperature, high vacuum) or with hard-to-synthesize inorganic-fullerene WS2 nanoparticles. This study aimed at investigating the friction and wear reduction of WS2 of nanoparticles and microparticles that can be synthesized in bulk and/or purchased off the shelf. Mixtures of WS2 nanoparticles and microparticles were also tested to see if a combination of reduced friction and wear would be achieved. The effect of the mixing process on the morphology of the particles was also reported. The microparticles showed the largest reduction in coefficient of friction while the nanoparticles showed the largest wear scar area reduction.
Technical Paper

Experimental and Analytical Study of Drawbead Restraining Force for Sheet Metal Drawing Operations

2020-04-14
2020-01-0753
Design of sheet metal drawing processes requires accurate information about the distribution of restraining forces, which is usually accomplished by a set of drawbeads positioned along the perimeter of the die cavity. This study is targeting bringing together the results of finite element analysis and experimental data in order to understand the most critical factors influencing the restraining force. The experimental study of the restraining force was performed using drawbead simulator tool installed into a tensile testing machine. Based upon the experimental results, it was observed that the restraining force of the given drawbead configuration is dependent upon the depth of bead penetration, friction between the drawbead surfaces as well as the clearance between the flanges of the drawbead simulator. This clearance is often adjusted during stamping operations to increase or decrease material inflow into the die cavity without any modification in the die.
Technical Paper

Engine Simulation of a Restricted FSAE Engine, Focusing on Restrictor Modelling

2006-12-05
2006-01-3651
One-dimensional (1D) engine simulation packages are limited in modeling flows through an adverse pressure gradient where boundary layer separation is more likely to occur, as in the case of the diffuser part of the restrictor. The restrictor modeling difficulty usually manifests itself as an engine model that consumes a lot of effort (both computational and from the user) in the modeling of the restrictor. The approach sought in this work was to provide a flow vs pressure drop dependency to the code such that it does not consume too much effort in the analysis of the restrictor. This approach is similar to that used for the valve flow, where a look up table is typically provided for determining the flow. Experimentally determined flow measurements on a thin-plate orifice, a short restrictor and a long restrictor are presented and discussed. The developed model gave excellent results in an acyclic steady-state simulation and is being integrated in the full engine model.
Technical Paper

Relative Contributions of Intake and Exhaust Tuning on SI Engine Breathing - A Computational Study

2007-04-16
2007-01-0492
This study examines the contributions and interactions of intake and exhaust tuning on a 4-stroke single-cylinder engine for various engine speeds and valve timings. The parametric study was performed using a 1-D engine simulation model, the combustion sub-model of which was calibrated based on experimental pressure data. Mechanisms by which tuning changes the volumetric efficiency of an engine were studied. Simulation results are compared with established empirical correlations which predict pipe lengths for maximum volumetric efficiency. It was found that intake tuning has a more dominant role in the breathing capability of the engine compared to exhaust tuning and that both are independent from each other. Valve timing was found to have no effect on intake tuning characteristics but to affect exhaust tuning.
Technical Paper

Piston Secondary Dynamics Considering Elastohydrodynamic Lubrication

2007-04-16
2007-01-1251
An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model including elastohydrodynamic (EHD) lubrication at the bore-skirt interface. A piston EHD analysis is used based on a finite-difference formulation. The oil film is discretized using a two-dimensional mesh. For improved computational efficiency without loss of accuracy, the Reynolds’ equation is solved using a perturbation approach which utilizes an “influence zone” concept, and a successive over-relaxation solver. The analysis includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading and piston barrelity and ovality. A Newmark-Beta time integration scheme combined with a Newton-Raphson linearization, calculates the piston secondary motion.
Technical Paper

Numerical Investigation of Transient Flow Effects on the Separation Parameters of a Reverse Flow Type Cyclone Particle Separator

2008-04-14
2008-01-0419
This study is concerned with computational fluid dynamics (CFD) simulations of flow in an automotive reverse flow type cyclone particle separator using the Reynolds Stress Model (RSM) turbulence model. Steady simulations were found to never fully converge, with pressure, velocity and vorticity results exhibiting small oscillations as the solution was iterated further. Transient simulations showed the presence of a main vortex precession that resulted in periodic fluctuations of the flow parameters. Fourier analysis was used to characterize this semi-periodic flow feature and to assess its effect on the two main performance measures of the cyclone: overall pressure drop and particle separation efficiency.
Technical Paper

Numerical Investigation of the Sensitivity of the Performance Criteria of an Automotive Cyclone Particle Separator to CFD Modeling Parameters

2009-04-20
2009-01-1176
Predicting the optimum performance parameters of an automotive cyclone particle separator (separation efficiency and pressure drop) using computational fluid dynamics by varying its geometrical parameters is challenging and a time consuming process due to the highly swirling nature of the flow. This study presents results of three investigations of the performance and design of a cyclone separator: a sensitivity analysis, deterministic optimization and a reliability based design optimization. All three cases involved variation of four geometric parameters that characterize the design of the cyclone.
Technical Paper

Investigation of Fuel Cell Performance and Water Accumulation in a Transparent PEM Fuel Cell

2009-04-20
2009-01-1006
Polymer Electrolyte Membrane (PEM) fuel cells have grown in research and development for many applications due to their high efficiency and humble operating condition requirements. Water management in the cathode region of the PEM fuel cell is an essential and sensitive phenomenon for cold environments and fuel cell’s performance. This paper investigates the behavior of water production by constructing a transparent-cathode PEM fuel cell. The effects of pressure, relative humidity, and cathode stoichiometric ratio on the production of water as a function of time were studied. Each test set is compared to a reference state. The images of water liquid accumulation inside the cathode bipolar plate channels are shown with the corresponding polarization curves.
Technical Paper

Reliability Analysis Using Monte Carlo Simulation and Response Surface Methods

2004-03-08
2004-01-0431
An accurate and efficient Monte Carlo simulation (MCS) method is developed in this paper for limit state-based reliability analysis, especially at system levels, by using a response surface approximation of the failure indicator function. The Moving Least Squares (MLS) method is used to construct the response surface of the indicator function, along with an Optimum Symmetric Latin Hypercube (OSLH) as the sampling technique. Similar to MCS, the proposed method can easily handle implicit, highly nonlinear limit-state functions, with variables of any statistical distributions and correlations. However, the efficiency of MCS can be greatly improved. The method appears to be particularly efficient for multiple limit state and multiple design point problem. A mathematical example and a practical example are used to highlight the superior accuracy and efficiency of the proposed method over traditional reliability methods.
Technical Paper

Correction Study of the Straightening Theory for Shafts

2002-03-04
2002-01-0129
Through the study of the straightening theory, the major causes of the errors affecting straightening accuracy have been analyzed. An error-perturbation curve has been generated from the difference between experiments and the single point straightening theory. By the study of this disturb error curve, a correction value can be obtained. Using this value to compensate the press stroke, the precise straightening result can be achieved.
X