Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Results of Plasma-Generated Hydrophilic and Antimicrobial Surfaces for Fluid Management Applications

2007-07-09
2007-01-3139
Humidity control within confined spaces is of great importance for existing NASA environmental control systems and Exploration applications. The Engineered Multifunction Surfaces (MFS) developed in this STTR Phase II form the foundation for a modular and scalable Distributed Humidity Control System (DHCS) while minimizing power, size and mass requirements. Key innovations of the MFS-based DHCS include passive humidity collection, control, and phase separation without moving parts, durable surface properties without particulate generation and accumulation, and the ability to scale up, or network in a distributed manner, a compact, modular device for Exploration applications including space suits, CEV, Rovers, Small and Transit Habitats and Large Habitats.
Technical Paper

Root Module Environmental Control System: Status of the Phase II SBIR Circulating, Aeration, Nutrient Delivery System (CANDS)

2004-07-19
2004-01-2433
The CANDS (Circulating, Aeration, and Nutrient Delivery System) Phase II SBIR is currently developing and testing methods and procedures to control moisture, oxygen, and temperature in the root zone of a particulate based micro-gravity nutrient delivery system. The completion of the first year and a half of the CANDS Phase II SBIR has shown significant engineering developments towards environmental control of the root zone. These developments include the measurement of root zone oxygen content, characterization of forced and flood-ebb aeration rates, successful control of root zone moisture using miniature heat-pulse moisture sensors, and successful control of root zone temperature via an insulating/temperature controlling water jacket. At the conclusion of the CANDS Phase II SBIR an integrated root zone environmental control system will be constructed for integration into plant growth systems to eliminate the uncertainties that exist in current plant growth data.
X