Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Submerged Electrical Discharges for Water Decontamination and Disinfection

2007-07-09
2007-01-3175
A modular and scalable Dense Medium Plasma Water Purification Reactor was developed, which uses atmospheric-pressure electrical discharges under water to generate highly reactive species to break down organic contaminants and microorganisms. Key benefits of this novel technology include: (i) extremely high efficiency in both decontamination and disinfection; (ii) operating continuously at ambient temperature and pressure; (iii) reducing demands on the containment vessel; and (iv) requiring no consumables. This plasma based technology was developed to replace the catalytic reactor being used in the planned International Space Station Water Processor Assembly.
Technical Paper

Analysis of Crew Interaction with Long-Duration Plant Growth Experiment

2003-07-07
2003-01-2482
The Biomass Production System (BPS) was flown on the ISS for 73 days as part of the Increment 4 mission. To obtain maximum benefit from the long mission duration, numerous manual crew procedures were incorporated into the BPS experiments. These procedures included gas sampling, root module priming, harvesting, pollination, filter cleaning, water refill, and water sampling. On-orbit crew assessments were filled out for each of these procedures to evaluate the ability of BPS to accommodate them. The assessment asked questions about each phase of an activity and solicited recommendations for improvements. Further analysis of most procedures was provided by detailed video made on-orbit and multiple post-flight crew debriefs. Most assessments indicated no need for improvements, but a number of crew suggestions will be incorporated into hardware and procedure updates.
Technical Paper

AAH, The Latest Development in Microgravity Animal Research

2005-07-11
2005-01-2784
The Advanced Animal Habitat (AAH) represents the next generation of Space Station based animal research facilities. Building upon previously developed flight hardware and experience, the AAH offers greatly enhanced system capabilities and performance. The design focuses upon the creation of a robust and flexible platform capable of supporting present and future experimental needs. A modular packaging and distributed control architecture leads to increased system adaptability and expandability. The baseline configuration includes group housing capability for up to six rats with automated food and water delivery as well as waste collection. Animals are continuously monitored with three cameras during both day and night cycles. The animals can be accessed while on-orbit through the Life Sciences Glovebox to perform a wide variety of experimental protocols.
Technical Paper

Root Module Environmental Control System: Status of the Phase II SBIR Circulating, Aeration, Nutrient Delivery System (CANDS)

2004-07-19
2004-01-2433
The CANDS (Circulating, Aeration, and Nutrient Delivery System) Phase II SBIR is currently developing and testing methods and procedures to control moisture, oxygen, and temperature in the root zone of a particulate based micro-gravity nutrient delivery system. The completion of the first year and a half of the CANDS Phase II SBIR has shown significant engineering developments towards environmental control of the root zone. These developments include the measurement of root zone oxygen content, characterization of forced and flood-ebb aeration rates, successful control of root zone moisture using miniature heat-pulse moisture sensors, and successful control of root zone temperature via an insulating/temperature controlling water jacket. At the conclusion of the CANDS Phase II SBIR an integrated root zone environmental control system will be constructed for integration into plant growth systems to eliminate the uncertainties that exist in current plant growth data.
X