Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Technical Paper

The Role of Second Phase Hard Particles on Hole Stretchability of Two AA6xxx Alloys

2017-03-28
2017-01-0307
The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.
Technical Paper

Relationship between Material Properties and Local Formability of DP980 Steels

2012-04-16
2012-01-0042
A noticeable degree of inconsistent forming behaviors has been observed for the 1st generation advanced high strength steels (AHSS) in production, and they appear to be associated with the inherent microstructural-level inhomogeneities for various AHSS. This indicates that the basic material property requirements and screening methods currently used for the mild steels and high strength low alloys (HSLA) are no longer sufficient for qualifying today's AHSS. In order to establish more relevant material acceptance criteria for AHSS, the fundamental understandings on key mechanical properties and microstructural features influencing the local formability of AHSS need to be developed. For this purpose, in this study, DP980 was selected as model steels and eight different types of DP980 sheet steels were acquired from various steel suppliers.
Technical Paper

Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

2013-04-08
2013-01-0644
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility.
Technical Paper

Evaluation of the Mechanical Performance of Self-Piercing Rivets in Friction Stir Welded Structures

2005-04-11
2005-01-1259
This paper presents the coupon performance data of friction stir welded tailor welded blanks (TWBs) joined to a monolithic aluminum sheet by self-piercing rivets (SPRs). Uniaxial tensile tests were performed to characterize the joint strength and the total energy absorption capability of the TWB/monolithic sheet joint assemblies. Cyclic fatigue tests were also conducted to characterize the fatigue behavior and failure mechanisms of the jointed assemblies. This study provides data for the automotive designer to determine whether friction stir welded aluminum TWB/monolithic sheet joints are within the target joint strengths for a particular application if it should be pierced during the assembly process.
Technical Paper

Local Thermomechanical Processing for Improving Formability of High Strength Aluminum Sheets

2022-03-29
2022-01-0244
Limited room temperature formability hinders the wide-spread use of high strength aluminum alloys in body parts. Forming at warm temperatures or from softer tempers are the current solutions. In this work, our approach is to start with age-hardened sheets from 7xxx and 6xxx family of alloys and improve their formability using local thermomechanical processing only in the regions demanding highest ductility in the forming processes. We achieved local formability improvements with friction stir processing and introduce another process named roller bending-unbending as a concept and showed its feasibility through finite element simulations. Initial results from FSP indicated significant deformation in the processed zones with minimal sheet distortion. FSP also resulted in dynamically recrystallized, fine grained (d < 5 μm) microstructures in the processed regions with textures significantly different from the base material.
Technical Paper

Formability and Fatigue of Aluminum Tailor Welded Blanks

2000-10-03
2000-01-2664
Tailor welded blanks are finding increasing application in automotive structures as a powerful method to reduce weight through material minimization. As consumer demand and regulatory pressure direct the automotive industry toward improved fuel efficiency and reduced emissions, aluminum alloys are also becoming an attractive automotive structural material with their potential ability to reduce vehicle weight. The combination of aluminum and tailor welded blanks thus appears attractive as a method to further minimize vehicle weight. Two major concerns regarding the application of aluminum tailor welded blanks are the formability and durability of the weld materials. The current work experimentally and numerically investigates aluminum tailor welded blanks ductility, and experimentally investigates their fatigue resistance.
Technical Paper

Formability Investigation of Aluminum Extrusions under Hydroforming Conditions

2000-10-03
2000-01-2675
The transportation industry is finding an ever-increasing number of applications for products manufactured using the tubular hydroforming process. Most of the current hydroforming applications use steel tubes. However, with the mounting regulatory pressure to reduce vehicle emissions, aluminum alloys appear attractive as an alternative material to reduce vehicle weight. The introduction of aluminum alloys to tubular hydroforming requires knowledge of their forming limits. The current work investigates the forming limits of AA6061 in both the T4 and T6 tempers under laboratory conditions. These experimental results are compared to theoretical forming limit diagrams calculated via the M-K method. Free hydroforming results and forming limit diagrams are also compared to components produced under commercial hydroforming conditions.
Technical Paper

What the Flicker Is Going on Here? Temporal Light Modulation in Automotive Lighting

2024-04-09
2024-01-2462
Temporal light modulation (TLM), colloquially known as “flicker,” is an issue in almost all lighting applications, due to widespread adoption of LED and OLED sources and their driving electronics. A subset of LED/OLED lighting systems delivers problematic TLM, often in specific types of residential, commercial, outdoor, and vehicular lighting. Dashboard displays, touchscreens, marker lights, taillights, daytime running lights (DRL), interior lighting, etc. frequently use pulse width modulation (PWM) circuits to achieve different luminances for different times of day and users’ visual adaptation levels. The resulting TLM waveforms and viewing conditions can result in distraction and disorientation, nausea, cognitive effects, and serious health consequences in some populations, occurring with or without the driver, passenger, or pedestrian consciously “seeing” the flicker.
X