Refine Your Search

Topic

Author

Search Results

Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Journal Article

Guidelines for Interpreting Soot Luminosity Imaging

2017-03-28
2017-01-0716
One way to develop an understanding of soot formation and oxidation processes that occur during direct injection and combustion in an internal combustion engine is to image the natural luminosity from soot over time. Imaging is possible when there is optical access to the combustion chamber. After the images are acquired, the next challenge is to properly interpret the luminous distributions that have been captured on the images. A major focus of this paper is to provide guidance on interpretation of experimental images of soot luminosity by explaining how radiation from soot is predicted to change as it is transmitted through the combustion chamber and to the imaging. The interpretations are only limited by the scope of the models that have been developed for this purpose. The end-goal of imaging radiation from soot is to estimate the amount of soot that is present.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Are the Traditional Methods for Determining Depletion of Total Base Number Providing Adequate Engine Protection?

2007-10-29
2007-01-4001
With the increasing use of modern, EGR-equipped, heavy-duty diesel engines and the use of lower sulfur and alternate fuels, such as biodiesel, lubricants are being exposed to a range of different compositions of acids. To complement the traditional detergent bases, todays lubricants have evolved to include a higher proportion of basic materials from amine-derived sources to aid in oxidation and soot control. This paper explores the impact of the different sources of acids, some of the issues they create and how they can be addressed, exemplified in a prototype CJ-4 lubricant formulation.
Technical Paper

Oxidation Stability of Some Phosphorus - Free Fully Formulated Crankcase Oils

1998-10-19
982581
Legislation world-wide has made it necessary to find ways to control the level of engine emissions and reduce the damage to our environment. Increasing restrictions have made the elimination of zinc dithiophosphates from crankcase oils and increasing the effectiveness of catalytic converters viable options. Lead and phosphorus containing compounds in the exhaust are known catalyst poisons that shorten the life of current automotive catalysts. Unleaded fuel has successfully resulted in a reduction of harmful emissions due to the fuel. Current government and industry research is actively pursuing replacement of phosphorus additives with phosphorus free additives. Several phosphorus-free oils were developed and are evaluated in bench tests in this study. Test comparisons with phosphorus- containing oils demonstrated satisfactory oxidation stability and wear performance of the phosphorus free oils.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

The Use of Life Cycle Assessment with Crankcase Lubricants to Yield Maximum Environmental Benefit – Case Study of Residual Chlorine in Lubricant

2008-10-06
2008-01-2376
Life Cycle Assessment (LCA) is a methodology used to determine quantitatively the environmental impacts of a range of options. The environmental community has used LCA to study all of the impacts of a product over its life cycle. This analysis can help to prevent instances where a greater degree of environmental harm results when changes are made to products based on consideration of impacts in only part of the life cycle. This study applies the methodology to engine lubricants, and in particular chlorine limits in engine lubricant specifications. Concern that chlorine in lubricants might contribute to emissions from vehicle exhausts of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), collectively called PCDD/F, led to the introduction of chlorine limits in lubricant specifications. No direct evidence was available linking chlorine in lubricants to PCDD/F formation, but precautionary principles were used to set lubricant chlorine limits.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Technical Paper

Combustion Modeling of Soot Reduction in Diesel and Alternate Fuels using CHEMKIN®

2001-03-05
2001-01-1239
A new gas phase kinetic model using Westbrook's gas phase n-heptane model and Frenklach's soot model was constructed. This model was then used to predict the impact on PAH formation as an indices of soot formation on ethanol/diesel fuel blends. The results were then compared to soot levels measured by various researchers. The ignition delay characteristics of ethanol were validated against experimental results in the literature. In this paper the results of the model and the comparison with experimental results will be discussed along with implications on the method of incorporation of additives and alternative fuels.
Technical Paper

Understanding Soot Mediated Oil Thickening: Rotational Rheology Techniques to Determine Viscosity and Soot Structure in Peugeot XUD-11 BTE Drain Oils

2001-05-07
2001-01-1967
The Association des Constructeurs Européen d'Automobiles (ACEA) light duty diesel engine specifications requires a kinematic viscosity measurement technique for Peugeot XUD-11 BTE drain oils. This viscosity measurement is used to define the medium temperature dispersivity of soot in the drain oil.(1) This paper discusses the use of rotational rheology methods to measure the Newtonian character of XUD-11 drain oils. The calculation of the rate index using the Hershel Bulkley model indicates the level of non-Newtonian behavior of the drain oil and directly reflects the level of soot dispersion or agglomeration. This study shows that the more non-Newtonian the drain oil the greater the difference between kinematic and rotational viscosity measurements Oscillation (dynamic) rheological techniques are used to characterize build up of soot structure.
Technical Paper

Jet Fuel Thermal Stability Additives - Electrical Conductivity and Interactions with Static Dissipator Additive

2002-05-06
2002-01-1652
The primary goal of the USAF JP-8+100 thermal stability additive (TSA) program is to increase the heat-sink capacity of JP-8 fuel by 50%. Current engine design is limited by a fuel nozzle temperature of 325°F (163°C); JP-8+100 has been designed to allow a 100°F increase in nozzle temperatures up to 425°F (218°C) without serious fuel degradation leading to excessive deposition. Previous studies have shown that TSA formulations increase the electrical conductivity of base jet fuel. In the present paper, further characterization of this phenomenon is described, as well as interactions of newer TSAs with combinations of SDA and other surface-active species in hydrocarbons, will be discussed.
Technical Paper

Jet Fuel Thermal Stability - Lab Testing for JP8+100

2002-05-06
2002-01-1651
The continued development of more powerful aviation turbine engines has demanded greater thermal stability of the fuel as a high temperature heat sink. This in turn requires better definition of the thermal stability of jet fuels. Thermal stability refers to the deposit-forming tendency of the fuel. It is generally accepted that dissolved oxygen initiates the deposition process in freshly refined fuels. While there are many tests that are designed to measure or assess thermal stability, many of these either do not display sufficient differentiation between fuels of average stability (JP-8) and intermediate stability (JP-8+100, JP-TS), or require large test equipment, large volumes of fuels and/or are costly. This paper will discuss the use of three laboratory tests as “concept thermal stability prediction” tools with aviation fuels, including Jet A-1 or JP-8, under JP8+100 test conditions.
Technical Paper

Jet Fuel Low Temperature Operability

2002-05-06
2002-01-1650
Jet-A and Jet-A-1 have fueled commercial and military jets for decades. With -40°C and -47°C freeze point specifications respectively, Jet-A and Jet-A-1 have adequate low temperature operability for the current demands of jet-powered planes. However next generation military and commercial jet aircraft will need fuels with improved low temperature performance to reap the benefits of flying higher, longer and taking polar routes. The extreme cold these new routes will expose jet fuel to makes it necessary to have fuel that flows at much lower temperatures than is currently available. Changing the jet fuel refining conditions can achieve the desired low temperature characteristics however this is very expensive.
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

2002-10-21
2002-01-2849
The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
Technical Paper

Engine Oil Effects on the Friction and Emissions of a Light-Duty, 2.2L Direct - Injection - Diesel Engine Part 1 - Engine Test Results

2002-10-21
2002-01-2681
The effects of lubricating oil on friction and engine-out emissions in a light-duty 2.2L compression ignition direct injection (CIDI) engine were investigated. A matrix of test oils varying in viscosity (SAE 5W-20 to 10W-40), friction modifier (FM) level and chemistry (MoDTC and organic FM), and basestock chemistry (mineral and synthetic) was investigated. Tests were run in an engine dynamometer according to a simulated, steady state FTP-75 procedure. Low viscosity oils and high levels of organic FM showed benefits in terms of fuel economy, but there were no significant effects observed with the oils with low MoDTC concentration on engine friction run in this program. No significant oil effects were observed on the gaseous emissions of the engine. PM emissions were analyzed for organic solubles and insolubles. The organic soluble fraction was further analyzed for the oil and fuel soluble portions.
Technical Paper

Fuel Sulfur Effect on Membrane Coated Diesel Particulate Filter

2002-10-21
2002-01-2788
The diesel particulate filter (DPF), in conjunction with fuel reformulation technologies such as ultralow sulfur fuel or Fischer-Tropsch diesel, represents a promising solution for reducing particulate emissions. In this work, membrane-coated and conventional uncoated SiC diesel particulate filters were tested on a 4-cylinder Volkswagen TDI diesel engine under four different engine load conditions at constant engine speed. Di-tert-butyl-sulfide was added to the base fuel to increase the sulfur content from 39 ppm to approximately 300 PPM. Gaseous and particulate mass emission measurements, as well as, PM morphology and composition have been used to address how engine-out and post-DPF emissions and post-oxidation catalyst emissions change with increasing fuel sulfur content. The influence of fuel sulfur on emissions was compared for the membrane coated and uncoated SiC filter using the same diesel oxidation catalyst (DOC) located downstream of the DPF.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

2002-10-21
2002-01-2891
The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
X